亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A significant challenge in image-guided surgery is the accurate measurement task of relevant structures such as vessel segments, resection margins, or bowel lengths. While this task is an essential component of many surgeries, it involves substantial human effort and is prone to inaccuracies. In this paper, we develop a novel human-AI-based method for laparoscopic measurements utilizing stereo vision that has been guided by practicing surgeons. Based on a holistic qualitative requirements analysis, this work proposes a comprehensive measurement method, which comprises state-of-the-art machine learning architectures, such as RAFT-Stereo and YOLOv8. The developed method is assessed in various realistic experimental evaluation environments. Our results outline the potential of our method achieving high accuracies in distance measurements with errors below 1 mm. Furthermore, on-surface measurements demonstrate robustness when applied in challenging environments with textureless regions. Overall, by addressing the inherent challenges of image-guided surgery, we lay the foundation for a more robust and accurate solution for intra- and postoperative measurements, enabling more precise, safe, and efficient surgical procedures.

相關內容

Data races are egregious parallel programming bugs on CPUs. They are even worse on GPUs due to the hierarchical thread and memory structure, which makes it possible to write code that is correctly synchronized within a thread group while not being correct across groups. Thus far, all major data-race checkers for GPUs suffer from at least one of the following problems: they do not check races in global memory, do not work on recent GPUs, scale poorly, have not been extensively tested, miss simple data races, or are not dependable without detailed knowledge of the compiler. Our new data-race detection tool, HiRace, overcomes these limitations. Its key novelty is an innovative parallel finite-state machine that condenses an arbitrarily long access history into a constant-length state, thus allowing it to handle large and long-running programs. HiRace is a dynamic tool that checks for thread-group shared memory and global device memory races. It utilizes source-code instrumentation, thus avoiding driver, compiler, and hardware dependencies. We evaluate it on a modern calibrated data-race benchmark suite. On the 580 tested CUDA kernels, 346 of which contain data races, HiRace finds races missed by other tools without false alarms and is more than 10 times faster on average than the current state of the art, while incurring only half the memory overhead.

Interactive segmentation is a crucial research area in medical image analysis aiming to boost the efficiency of costly annotations by incorporating human feedback. This feedback takes the form of clicks, scribbles, or masks and allows for iterative refinement of the model output so as to efficiently guide the system towards the desired behavior. In recent years, deep learning-based approaches have propelled results to a new level causing a rapid growth in the field with 121 methods proposed in the medical imaging domain alone. In this review, we provide a structured overview of this emerging field featuring a comprehensive taxonomy, a systematic review of existing methods, and an in-depth analysis of current practices. Based on these contributions, we discuss the challenges and opportunities in the field. For instance, we find that there is a severe lack of comparison across methods which needs to be tackled by standardized baselines and benchmarks.

Speech emotion conversion is the task of converting the expressed emotion of a spoken utterance to a target emotion while preserving the lexical content and speaker identity. While most existing works in speech emotion conversion rely on acted-out datasets and parallel data samples, in this work we specifically focus on more challenging in-the-wild scenarios and do not rely on parallel data. To this end, we propose a diffusion-based generative model for speech emotion conversion, the EmoConv-Diff, that is trained to reconstruct an input utterance while also conditioning on its emotion. Subsequently, at inference, a target emotion embedding is employed to convert the emotion of the input utterance to the given target emotion. As opposed to performing emotion conversion on categorical representations, we use a continuous arousal dimension to represent emotions while also achieving intensity control. We validate the proposed methodology on a large in-the-wild dataset, the MSP-Podcast v1.10. Our results show that the proposed diffusion model is indeed capable of synthesizing speech with a controllable target emotion. Crucially, the proposed approach shows improved performance along the extreme values of arousal and thereby addresses a common challenge in the speech emotion conversion literature.

Anomaly detection on attributed networks aims to find the nodes whose behaviors are significantly different from other majority nodes. Generally, network data contains information about relationships between entities, and the anomaly is usually embodied in these relationships. Therefore, how to comprehensively model complex interaction patterns in networks is still a major focus. It can be observed that anomalies in networks violate the homophily assumption. However, most existing studies only considered this phenomenon obliquely rather than explicitly. Besides, the node representation of normal entities can be perturbed easily by the noise relationships introduced by anomalous nodes. To address the above issues, we present a novel contrastive learning framework for anomaly detection on attributed networks, \textbf{SCALA}, aiming to improve the embedding quality of the network and provide a new measurement of qualifying the anomaly score for each node by introducing sparsification into the conventional method. Extensive experiments are conducted on five benchmark real-world datasets and the results show that SCALA consistently outperforms all baseline methods significantly.

We propose a method for checking generalized reachability properties in Petri nets that takes advantage of structural reductions and that can be used, transparently, as a pre-processing step of existing model-checkers. Our approach is based on a new procedure that can project a property, about an initial Petri net, into an equivalent formula that only refers to the reduced version of this net. Our projection is defined as a variable elimination procedure for linear integer arithmetic tailored to the specific kind of constraints we handle. It has linear complexity, is guaranteed to return a sound property, and makes use of a simple condition to detect when the result is exact. Experimental results show that our approach works well in practice and that it can be useful even when there is only a limited amount of reductions.

We propose a margin-based loss for tuning joint vision-language models so that their gradient-based explanations are consistent with region-level annotations provided by humans for relatively smaller grounding datasets. We refer to this objective as Attention Mask Consistency (AMC) and demonstrate that it produces superior visual grounding results than previous methods that rely on using vision-language models to score the outputs of object detectors. Particularly, a model trained with AMC on top of standard vision-language modeling objectives obtains a state-of-the-art accuracy of 86.49% in the Flickr30k visual grounding benchmark, an absolute improvement of 5.38% when compared to the best previous model trained under the same level of supervision. Our approach also performs exceedingly well on established benchmarks for referring expression comprehension where it obtains 80.34% accuracy in the easy test of RefCOCO+, and 64.55% in the difficult split. AMC is effective, easy to implement, and is general as it can be adopted by any vision-language model, and can use any type of region annotations.

In the field of medical sciences, reliable detection and classification of brain tumors from images remains a formidable challenge due to the rarity of tumors within the population of patients. Therefore, the ability to detect tumors in anomaly scenarios is paramount for ensuring timely interventions and improved patient outcomes. This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations. The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases. The detection and classification pipelines are separated into two consecutive tasks. The detection phase involved comprehensive data analysis and pre-processing to modify the number of image samples and the number of patients of each class to anomaly distribution (9 Normal per 1 Tumor) to comply with real world scenarios. Next, in addition to common evaluation metrics for the testing, we employed a novel performance evaluation method called Patient to Patient (PTP), focusing on the realistic evaluation of the model. In the detection phase, we fine-tuned a YOLOv8n detection model to detect the tumor region. Subsequent testing and evaluation yielded competitive performance both in Common Evaluation Metrics and PTP metrics. Furthermore, using the Data Efficient Image Transformer (DeiT) module, we distilled a Vision Transformer (ViT) model from a fine-tuned ResNet152 as a teacher in the classification phase. This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.

Scene flow estimation is a crucial component in the development of autonomous driving and 3D robotics, providing valuable information for environment perception and navigation. Despite the advantages of learning-based scene flow estimation techniques, their domain specificity and limited generalizability across varied scenarios pose challenges. In contrast, non-learning optimization-based methods, incorporating robust priors or regularization, offer competitive scene flow estimation performance, require no training, and show extensive applicability across datasets, but suffer from lengthy inference times. In this paper, we present OptFlow, a fast optimization-based scene flow estimation method. Without relying on learning or any labeled datasets, OptFlow achieves state-of-the-art performance for scene flow estimation on popular autonomous driving benchmarks. It integrates a local correlation weight matrix for correspondence matching, an adaptive correspondence threshold limit for nearest-neighbor search, and graph prior rigidity constraints, resulting in expedited convergence and improved point correspondence identification. Moreover, we demonstrate how integrating a point cloud registration function within our objective function bolsters accuracy and differentiates between static and dynamic points without relying on external odometry data. Consequently, OptFlow outperforms the baseline graph-prior method by approximately 20% and the Neural Scene Flow Prior method by 5%-7% in accuracy, all while offering the fastest inference time among all non-learning scene flow estimation methods.

Knowledge graph embedding models learn the representations of entities and relations in the knowledge graphs for predicting missing links (relations) between entities. Their effectiveness are deeply affected by the ability of modeling and inferring different relation patterns such as symmetry, asymmetry, inversion, composition and transitivity. Although existing models are already able to model many of these relations patterns, transitivity, a very common relation pattern, is still not been fully supported. In this paper, we first theoretically show that the transitive relations can be modeled with projections. We then propose the Rot-Pro model which combines the projection and relational rotation together. We prove that Rot-Pro can infer all the above relation patterns. Experimental results show that the proposed Rot-Pro model effectively learns the transitivity pattern and achieves the state-of-the-art results on the link prediction task in the datasets containing transitive relations.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司