亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a series of quantum algorithms for computing a wide range of quantum entropies and distances, including the von Neumann entropy, quantum R\'{e}nyi entropy, trace distance, and fidelity. The proposed algorithms significantly outperform the prior best (and even quantum) ones in the low-rank case, some of which achieve exponential speedups. In particular, for $N$-dimensional quantum states of rank $r$, our proposed quantum algorithms for computing the von Neumann entropy, trace distance and fidelity within additive error $\varepsilon$ have time complexity of $\tilde O(r/\varepsilon^2)$, $\tilde O(r^5/\varepsilon^6)$ and $\tilde O(r^{6.5}/\varepsilon^{7.5})$, respectively. By contrast, prior quantum algorithms for the von Neumann entropy and trace distance usually have time complexity $\Omega(N)$, and the prior best one for fidelity has time complexity $\tilde O(r^{12.5}/\varepsilon^{13.5})$. The key idea of our quantum algorithms is to extend block-encoding from unitary operators in previous work to quantum states (i.e., density operators). It is realized by developing several convenient techniques to manipulate quantum states and extract information from them. The advantage of our techniques over the existing methods is that no restrictions on density operators are required; in sharp contrast, the previous methods usually require a lower bound on the minimal non-zero eigenvalue of density operators.

相關內容

Stochastic approximation is a class of algorithms that update a vector iteratively, incrementally, and stochastically, including, e.g., stochastic gradient descent and temporal difference learning. One fundamental challenge in analyzing a stochastic approximation algorithm is to establish its stability, i.e., to show that the stochastic vector iterates are bounded almost surely. In this paper, we extend the celebrated Borkar-Meyn theorem for stability from the Martingale difference noise setting to the Markovian noise setting, which greatly improves its applicability in reinforcement learning, especially in those off-policy reinforcement learning algorithms with linear function approximation and eligibility traces. Central to our analysis is the diminishing asymptotic rate of change of a few functions, which is implied by both a form of strong law of large numbers and a commonly used V4 Lyapunov drift condition and trivially holds if the Markov chain is finite and irreducible.

We provide a geometric approach to the lasso. We study the tangency of the level sets of the least square objective function with the polyhedral boundary sets $B(t)$ of the parameters in $\mathbb R^p$ with the $\ell_1$ norm equal to $t$. Here $t$ decreases from the value $\hat t$, which corresponds to the actual, nonconstrained minimizer of the least square objective function, denoted by $\hat\beta$. We derive closed exact formulae for the solution of the lasso under the full rank assumption. Our method does not assume iterative numerical procedures and it is, thus, computationally more efficient than the existing algorithms for solving the lasso. We also establish several important general properties of the solutions of the lasso. We prove that each lasso solution form a simple polygonal chain in $\mathbb{R}^p$ with $\hat\beta$ and the origin as the endpoints. There are no two segments of the polygonal chain that are parallel. We prove that such a polygonal chain can intersect interiors of more than one orthant in $\mathbb{R}^p$, but it cannot intersect interiors of more than $p$ orthants, which is, in general, the best possible estimate for non-normalized data. We prove that if a polygonal chain passes from the interior of one to the interior of another orthant, then it never again returns to the interior of the former. The intersection of a chain and the interior of an orthant coincides with a segment minus its end points, which belongs to a ray having $\hat\beta$ as its initial point. We illustrate the results using real data examples as well as especially crafted examples with hypothetical data. Already in $p=2$ case we show a striking difference in the maximal number of quadrants a polygonal chain of a lasso solution can intersect in the case of normalized data, which is $1$ vs. nonnormalized data, which is $2$.

We provide an algorithm for the simultaneous system identification and model predictive control of nonlinear systems. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal (non-causal) controller. Particularly, the algorithm enjoys sublinear dynamic regret, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown disturbances and system dynamics will adapt to its actions. The algorithm is self-supervised and applies to control-affine systems with unknown dynamics and disturbances that can be expressed in reproducing kernel Hilbert spaces. Such spaces can model external disturbances and modeling errors that can even be adaptive to the system's state and control input. For example, they can model wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters such as inertia of mechanical systems. The algorithm first generates random Fourier features that are used to approximate the unknown dynamics or disturbances. Then, it employs model predictive control based on the current learned model of the unknown dynamics (or disturbances). The model of the unknown dynamics is updated online using least squares based on the data collected while controlling the system. We validate our algorithm in both hardware experiments and physics-based simulations. The simulations include (i) a cart-pole aiming to maintain the pole upright despite inaccurate model parameters, and (ii) a quadrotor aiming to track reference trajectories despite unmodeled aerodynamic drag effects. The hardware experiments include a quadrotor aiming to track a circular trajectory despite unmodeled aerodynamic drag effects, ground effects, and wind disturbances.

A recent trend in the context of graph theory is to bring theoretical analyses closer to empirical observations, by focusing the studies on random graph models that are used to represent practical instances. There, it was observed that geometric inhomogeneous random graphs (GIRGs) yield good representations of complex real-world networks, by expressing edge probabilities as a function that depends on (heterogeneous) vertex weights and distances in some underlying geometric space that the vertices are distributed in. While most of the parameters of the model are understood well, it was unclear how the dimensionality of the ground space affects the structure of the graphs. In this paper, we complement existing research into the dimension of geometric random graph models and the ongoing study of determining the dimensionality of real-world networks, by studying how the structure of GIRGs changes as the number of dimensions increases. We prove that, in the limit, GIRGs approach non-geometric inhomogeneous random graphs and present insights on how quickly the decay of the geometry impacts important graph structures. In particular, we study the expected number of cliques of a given size as well as the clique number and characterize phase transitions at which their behavior changes fundamentally. Finally, our insights help in better understanding previous results about the impact of the dimensionality on geometric random graphs.

Ordinary differential equations (ODEs) are widely used to describe dynamical systems in science, but identifying parameters that explain experimental measurements is challenging. In particular, although ODEs are differentiable and would allow for gradient-based parameter optimization, the nonlinear dynamics of ODEs often lead to many local minima and extreme sensitivity to initial conditions. We therefore propose diffusion tempering, a novel regularization technique for probabilistic numerical methods which improves convergence of gradient-based parameter optimization in ODEs. By iteratively reducing a noise parameter of the probabilistic integrator, the proposed method converges more reliably to the true parameters. We demonstrate that our method is effective for dynamical systems of different complexity and show that it obtains reliable parameter estimates for a Hodgkin-Huxley model with a practically relevant number of parameters.

With the rapid evolution of space-borne capabilities, space edge computing (SEC) is becoming a new computation paradigm for future integrated space and terrestrial networks. Satellite edges adopt advanced on-board hardware, which not only enables new opportunities to perform complex intelligent tasks in orbit, but also involves new challenges due to the additional energy consumption in power-constrained space environment. In this paper, we present PHOENIX, an energy-efficient task scheduling framework for emerging SEC networks. PHOENIX exploits a key insight that in the SEC network, there always exist a number of sunlit edges which are illuminated during the entire orbital period and have sufficient energy supplement from the sun. PHOENIX accomplishes energy-efficient in-orbit computing by judiciously offloading space tasks to "sunlight-sufficient" edges or to the ground. Specifically, PHOENIX first formulates the SEC battery energy optimizing (SBEO) problem which aims at minimizing the average battery energy consumption while satisfying various task completion constraints. Then PHOENIX incorporates a sunlight-aware scheduling mechanism to solve the SBEO problem and schedule SEC tasks efficiently. Finally, we implement a PHOENIX prototype and build an SEC testbed. Extensive data-driven evaluations demonstrate that as compared to other state-of-the-art solutions, PHOENIX can effectively reduce up to 54.8% SEC battery energy consumption and prolong battery lifetime to 2.9$\times$ while still completing tasks on time.

Simultaneous interpretation (SI), the translation of one language to another in real time, starts translation before the original speech has finished. Its evaluation needs to consider both latency and quality. This trade-off is challenging especially for distant word order language pairs such as English and Japanese. To handle this word order gap, interpreters maintain the word order of the source language as much as possible to keep up with original language to minimize its latency while maintaining its quality, whereas in translation reordering happens to keep fluency in the target language. This means outputs synchronized with the source language are desirable based on the real SI situation, and it's a key for further progress in computational SI and simultaneous machine translation (SiMT). In this work, we propose an automatic evaluation metric for SI and SiMT focusing on word order synchronization. Our evaluation metric is based on rank correlation coefficients, leveraging cross-lingual pre-trained language models. Our experimental results on NAIST-SIC-Aligned and JNPC showed our metrics' effectiveness to measure word order synchronization between source and target language.

Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing, promising energy-efficient and biologically plausible models for complex tasks. This paper weaves together three groundbreaking studies that revolutionize SNN performance through the introduction of heterogeneity in neuron and synapse dynamics. We explore the transformative impact of Heterogeneous Recurrent Spiking Neural Networks (HRSNNs), supported by rigorous analytical frameworks and novel pruning methods like Lyapunov Noise Pruning (LNP). Our findings reveal how heterogeneity not only enhances classification performance but also reduces spiking activity, leading to more efficient and robust networks. By bridging theoretical insights with practical applications, this comprehensive summary highlights the potential of SNNs to outperform traditional neural networks while maintaining lower computational costs. Join us on a journey through the cutting-edge advancements that pave the way for the future of intelligent, energy-efficient neural computing.

A quantum computing simulation provides the opportunity to explore the behaviors of quantum circuits, study the properties of quantum gates, and develop quantum computing algorithms. Simulating quantum circuits requires geometric time and space complexities, impacting the size of the quantum circuit that can be simulated as well as the respective time required to simulate a particular circuit. Applying the parallelism inherent in the simulation and crafting custom architectures, larger quantum circuits can be simulated. A scalable accelerator architecture is proposed to provide a high performance, highly parallel, accelerator. Among the challenges of creating a scalable architecture is managing parallelism, efficiently routing quantum state components for gate evaluation, and measurement. An example is demonstrated on an Intel Agilex field programmable gate array (FPGA).

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司