亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Objective: We aimed to use adaptive psychophysics methods, which is a Bayesian Model, to measure users' time perception of various progress bar quantitatively. Background: Progress bar informs users about the status of ongoing processes. Progress bars frequently display nonuniform speed patterns, such as acceleration and deceleration. However, which progress bar is perceived faster remain unclear. Methods: We measured the point of subject equality (PSE) of the constant progress bar toward four different 5-second progress bars with a non-constant speed. To measure PSE, in each trial, a constant progress bar and a non-constant progress bar were presented to participants. Participants needed to judge which one is shorter. Based on their choice, the model generated the time duration of constant progress bar in next trial. After 40 trials for each non-constant progress bar, the PSE was calculated by the model. Eye tracking was recorded during the experiment.Results: Our results show that the constant progress bar and speed-up progress bar are perceived to be faster. The anchoring effect fits the results of our study, indicating that the final part of the progress bar is more important for time perception. Moreover, the eye-tracking results indicate that the progress bar is perceived to be slower is related to the overload of cognitive resources.Conclusion: The constant progress bar and speed-up progress bar are perceived as the quickest. Application: The results suggest that UX design can use constant or speed-up progress bar, in order to improve user experience in waiting.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 多樣性 · 泛化理論 · Networking · motivation ·
2023 年 1 月 27 日

Standard neural networks struggle to generalize under distribution shifts in computer vision. Fortunately, combining multiple networks can consistently improve out-of-distribution generalization. In particular, weight averaging (WA) strategies were shown to perform best on the competitive DomainBed benchmark; they directly average the weights of multiple networks despite their nonlinearities. In this paper, we propose Diverse Weight Averaging (DiWA), a new WA strategy whose main motivation is to increase the functional diversity across averaged models. To this end, DiWA averages weights obtained from several independent training runs: indeed, models obtained from different runs are more diverse than those collected along a single run thanks to differences in hyperparameters and training procedures. We motivate the need for diversity by a new bias-variance-covariance-locality decomposition of the expected error, exploiting similarities between WA and standard functional ensembling. Moreover, this decomposition highlights that WA succeeds when the variance term dominates, which we show occurs when the marginal distribution changes at test time. Experimentally, DiWA consistently improves the state of the art on DomainBed without inference overhead.

Modern video streaming services require quality assurance of the presented audiovisual material. Quality assurance mechanisms allow streaming platforms to provide quality levels that are considered sufficient to yield user satisfaction, with the least possible amount of data transferred. A variety of measures and approaches have been developed to control video quality, e.g., by adapting it to network conditions. These include objective matrices of the quality and thresholds identified by means of subjective perceptual judgments. The former group of matrices has recently gained the attention of (multi)media researchers. They call this area of study ``Quality of Experience'' (QoE). In this paper, we present a review of QoE's theoretical models together with a discussion of their properties and implications for the field. We argue that most of them represent the bottom-up approach to modeling. Such models focus on describing as many variables as possible, but with a limited ability to investigate the causal relationship between them; therefore, the applicability of the findings in practice is limited. To advance the field, we therefore propose a structural, top-down model of video QoE that describes causal relationships among variables. We hope that our framework will facilitate designing comparable experiments in the domain.

When acquiring syntax, children consistently choose hierarchical rules over competing non-hierarchical possibilities. Is this preference due to a learning bias for hierarchical structure, or due to more general biases that interact with hierarchical cues in children's linguistic input? We explore these possibilities by training LSTMs and Transformers - two types of neural networks without a hierarchical bias - on data similar in quantity and content to children's linguistic input: text from the CHILDES corpus. We then evaluate what these models have learned about English yes/no questions, a phenomenon for which hierarchical structure is crucial. We find that, though they perform well at capturing the surface statistics of child-directed speech (as measured by perplexity), both model types generalize in a way more consistent with an incorrect linear rule than the correct hierarchical rule. These results suggest that human-like generalization from text alone requires stronger biases than the general sequence-processing biases of standard neural network architectures.

Visualization plays a vital role in making sense of complex network data. Recent studies have shown the potential of using extended reality (XR) for the immersive exploration of networks. The additional depth cues offered by XR help users perform better in certain tasks when compared to using traditional desktop setups. However, prior works on immersive network visualization rely on mostly static graph layouts to present the data to the user. This poses a problem since there is no optimal layout for all possible tasks. The choice of layout heavily depends on the type of network and the task at hand. We introduce a multi-layout approach that allows users to effectively explore hierarchical network data in immersive space. The resulting system leverages different layout techniques and interactions to efficiently use the available space in VR and provide an optimal view of the data depending on the task and the level of detail required to solve it. To evaluate our approach, we have conducted a user study comparing it against the state of the art for immersive network visualization. Participants performed tasks at varying spatial scopes. The results show that our approach outperforms the baseline in spatially focused scenarios as well as when the whole network needs to be considered.

Multivariate point processes are widely applied to model event-type data such as natural disasters, online message exchanges, financial transactions or neuronal spike trains. One very popular point process model in which the probability of occurrences of new events depend on the past of the process is the Hawkes process. In this work we consider the nonlinear Hawkes process, which notably models excitation and inhibition phenomena between dimensions of the process. In a nonparametric Bayesian estimation framework, we obtain concentration rates of the posterior distribution on the parameters, under mild assumptions on the prior distribution and the model. These results also lead to convergence rates of Bayesian estimators. Another object of interest in event-data modelling is to recover the graph of interaction - or Granger connectivity graph - of the phenomenon. We provide consistency guarantees on Bayesian methods for estimating this quantity; in particular, we prove that the posterior distribution is consistent on the graph adjacency matrix of the process, as well as a Bayesian estimator based on an adequate loss function.

The vision transformer (ViT) has advanced to the cutting edge in the visual recognition task. Transformers are more robust than CNN, according to the latest research. ViT's self-attention mechanism, according to the claim, makes it more robust than CNN. Even with this, we discover that these conclusions are based on unfair experimental conditions and just comparing a few models, which did not allow us to depict the entire scenario of robustness performance. In this study, we investigate the performance of 58 state-of-the-art computer vision models in a unified training setup based not only on attention and convolution mechanisms but also on neural networks based on a combination of convolution and attention mechanisms, sequence-based model, complementary search, and network-based method. Our research demonstrates that robustness depends on the training setup and model types, and performance varies based on out-of-distribution type. Our research will aid the community in better understanding and benchmarking the robustness of computer vision models.

Tracking individuals is a vital part of many experiments conducted to understand collective behaviour. Ants are the paradigmatic model system for such experiments but their lack of individually distinguishing visual features and their high colony densities make it extremely difficult to perform reliable tracking automatically. Additionally, the wide diversity of their species' appearances makes a generalized approach even harder. In this paper, we propose a data-driven multi-object tracker that, for the first time, employs domain adaptation to achieve the required generalisation. This approach is built upon a joint-detection-and-tracking framework that is extended by a set of domain discriminator modules integrating an adversarial training strategy in addition to the tracking loss. In addition to this novel domain-adaptive tracking framework, we present a new dataset and a benchmark for the ant tracking problem. The dataset contains 57 video sequences with full trajectory annotation, including 30k frames captured from two different ant species moving on different background patterns. It comprises 33 and 24 sequences for source and target domains, respectively. We compare our proposed framework against other domain-adaptive and non-domain-adaptive multi-object tracking baselines using this dataset and show that incorporating domain adaptation at multiple levels of the tracking pipeline yields significant improvements. The code and the dataset are available at //github.com/chamathabeysinghe/da-tracker.

Many countries faced challenges in their health workforce supply like impending retirement waves, negative population growth, or a suboptimal distribution of resources across medical sectors even before the pandemic struck. Current quantitative models are often of limited usability as they either require extensive individual-level data to be properly calibrated or (in the absence of such data) become too simplistic to capture key demographic changes or disruptive epidemiological shocks like the SARS-CoV-2 pandemic. We propose a novel population-dynamical and stock-flow-consistent approach to health workforce supply forecasting that is complex enough to address dynamically changing behaviors while requiring only publicly available timeseries data for complete calibration. We demonstrate the usefulness of this model by applying it to 21 European countries to forecast the supply of generalist and specialist physicians until 2040, as well as how Covid-related mortality and increased healthcare utilization might impact this supply. Compared to staffing levels required to keep the physician density constant at 2019 levels, we find that in many countries there is indeed a significant trend toward decreasing density for generalist physicians at the expense of increasing densities for specialists. The trends for specialists are exacerbated in many Southern and Eastern European countries by expectations of negative population growth. Compared to the expected demographic changes in the population and the health workforce, we expect a limited impact of Covid on these trends even under conservative modelling assumptions. It is of the utmost importance to devise tools for decision makers to influence the allocation and supply of physicians across fields and sectors to combat these imbalances.

Salient object detection is a problem that has been considered in detail and many solutions proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. The solution presented in this paper solves this more general problem that considers relative rank, and we propose data and metrics suitable to measuring success in a relative objects saliency landscape. A novel deep learning solution is proposed based on a hierarchical representation of relative saliency and stage-wise refinement. We also show that the problem of salient object subitizing can be addressed with the same network, and our approach exceeds performance of any prior work across all metrics considered (both traditional and newly proposed).

Automatic License Plate Recognition (ALPR) has been a frequent topic of research due to many practical applications. However, many of the current solutions are still not robust in real-world situations, commonly depending on many constraints. This paper presents a robust and efficient ALPR system based on the state-of-the-art YOLO object detection. The Convolutional Neural Networks (CNNs) are trained and fine-tuned for each ALPR stage so that they are robust under different conditions (e.g., variations in camera, lighting, and background). Specially for character segmentation and recognition, we design a two-stage approach employing simple data augmentation tricks such as inverted License Plates (LPs) and flipped characters. The resulting ALPR approach achieved impressive results in two datasets. First, in the SSIG dataset, composed of 2,000 frames from 101 vehicle videos, our system achieved a recognition rate of 93.53% and 47 Frames Per Second (FPS), performing better than both Sighthound and OpenALPR commercial systems (89.80% and 93.03%, respectively) and considerably outperforming previous results (81.80%). Second, targeting a more realistic scenario, we introduce a larger public dataset, called UFPR-ALPR dataset, designed to ALPR. This dataset contains 150 videos and 4,500 frames captured when both camera and vehicles are moving and also contains different types of vehicles (cars, motorcycles, buses and trucks). In our proposed dataset, the trial versions of commercial systems achieved recognition rates below 70%. On the other hand, our system performed better, with recognition rate of 78.33% and 35 FPS.

北京阿比特科技有限公司