亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The fusion of raw features from multiple sensors on an autonomous vehicle to create a Bird's Eye View (BEV) representation is crucial for planning and control systems. There is growing interest in using deep learning models for BEV semantic segmentation. Anticipating segmentation errors and improving the explainability of DNNs is essential for autonomous driving, yet it is under-studied. This paper introduces a benchmark for predictive uncertainty quantification in BEV segmentation. The benchmark assesses various approaches across three popular datasets using two representative backbones and focuses on the effectiveness of predicted uncertainty in identifying misclassified and out-of-distribution (OOD) pixels, as well as calibration. Empirical findings highlight the challenges in uncertainty quantification. Our results find that evidential deep learning based approaches show the most promise by efficiently quantifying aleatoric and epistemic uncertainty. We propose the Uncertainty-Focal-Cross-Entropy (UFCE) loss, designed for highly imbalanced data, which consistently improves the segmentation quality and calibration. Additionally, we introduce a vacuity-scaled regularization term that enhances the model's focus on high uncertainty pixels, improving epistemic uncertainty quantification.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · HTTPS · Performance · Networking · 噪聲 ·
2024 年 7 月 12 日

We present a high-fidelity Mixed Reality sensor emulation framework for testing and evaluating the resilience of Unmanned Aerial Vehicles (UAVs) against false data injection (FDI) attacks. The proposed approach can be utilized to assess the impact of FDI attacks, benchmark attack detector performance, and validate the effectiveness of mitigation/reconfiguration strategies in single-UAV and UAV swarm operations. Our Mixed Reality framework leverages high-fidelity simulations of Gazebo and a Motion Capture system to emulate proprioceptive (e.g., GNSS) and exteroceptive (e.g., camera) sensor measurements in real-time. We propose an empirical approach to faithfully recreate signal characteristics such as latency and noise in these measurements. Finally, we illustrate the efficacy of our proposed framework through a Mixed Reality experiment consisting of an emulated GNSS attack on an actual UAV, which (i) demonstrates the impact of false data injection attacks on GNSS measurements and (ii) validates a mitigation strategy utilizing a distributed camera network developed in our previous work. Our open-source implementation is available at \href{//github.com/CogniPilot/mixed\_sense}{\texttt{//github.com/CogniPilot/mixed\_sense}}

Recently introduced Contrastive Language-Image Pre-Training (CLIP) bridges images and text by embedding them into a joint latent space. This opens the door to ample literature that aims to manipulate an input image by providing a textual explanation. However, due to the discrepancy between image and text embeddings in the joint space, using text embeddings as the optimization target often introduces undesired artifacts in the resulting images. Disentanglement, interpretability, and controllability are also hard to guarantee for manipulation. To alleviate these problems, we propose to define corpus subspaces spanned by relevant prompts to capture specific image characteristics. We introduce CLIP Projection-Augmentation Embedding (PAE) as an optimization target to improve the performance of text-guided image manipulation. Our method is a simple and general paradigm that can be easily computed and adapted, and smoothly incorporated into any CLIP-based image manipulation algorithm. To demonstrate the effectiveness of our method, we conduct several theoretical and empirical studies. As a case study, we utilize the method for text-guided semantic face editing. We quantitatively and qualitatively demonstrate that PAE facilitates a more disentangled, interpretable, and controllable image manipulation with state-of-the-art quality and accuracy. Project page: //chenliang-zhou.github.io/CLIP-PAE/.

Utilizing Vision-Language Models (VLMs) for robotic manipulation represents a novel paradigm, aiming to enhance the model's ability to generalize to new objects and instructions. However, due to variations in camera specifications and mounting positions, existing methods exhibit significant performance disparities across different robotic platforms. To address this challenge, we propose RoboUniView in this paper, an innovative approach that decouples visual feature extraction from action learning. We first learn a unified view representation from multi-perspective views by pre-training on readily accessible data, and then derive actions from this unified view representation to control robotic manipulation. This unified view representation more accurately mirrors the physical world and is not constrained by the robotic platform's camera parameters. Thanks to this methodology, we achieve state-of-the-art performance on the demanding CALVIN benchmark, enhancing the success rate in the $D \to D$ setting from 93.0% to 96.2%, and in the $ABC \to D$ setting from 92.2% to 94.2%. Moreover, our model exhibits outstanding adaptability and flexibility: it maintains high performance under unseen camera parameters, can utilize multiple datasets with varying camera parameters, and is capable of joint cross-task learning across datasets. Code is provided for re-implementation. //github.com/liufanfanlff/RoboUniview

This study develops a robust movie recommendation system using various machine learning techniques, including Non- Negative Matrix Factorization (NMF), Truncated Singular Value Decomposition (SVD), and K-Means clustering. The primary objective is to enhance user experience by providing personalized movie recommendations. The research encompasses data preprocessing, model training, and evaluation, highlighting the efficacy of the employed methods. Results indicate that the proposed system achieves high accuracy and relevance in recommendations, making significant contributions to the field of recommendations systems.

High-resolution inputs enable Large Vision-Language Models (LVLMs) to discern finer visual details, enhancing their comprehension capabilities. To reduce the training and computation costs caused by high-resolution input, one promising direction is to use sliding windows to slice the input into uniform patches, each matching the input size of the well-trained vision encoder. Although efficient, this slicing strategy leads to the fragmentation of original input, i.e., the continuity of contextual information and spatial geometry is lost across patches, adversely affecting performance in cross-patch context perception and position-specific tasks. To overcome these shortcomings, we introduce HiRes-LLaVA, a novel framework designed to efficiently process any size of high-resolution input without altering the original contextual and geometric information. HiRes-LLaVA comprises two innovative components: (i) a SliceRestore adapter that reconstructs sliced patches into their original form, efficiently extracting both global and local features via down-up-sampling and convolution layers, and (ii) a Self-Mining Sampler to compresses the vision tokens based on themselves, preserving the original context and positional information while reducing training overhead. To assess the ability of handling context fragmentation, we construct a new benchmark, EntityGrid-QA, consisting of edge-related and position-related tasks. Our comprehensive experiments demonstrate the superiority of HiRes-LLaVA on both existing public benchmarks and on EntityGrid-QA, particularly on document-oriented tasks, establishing new standards for handling high-resolution inputs.

The Wizard of Oz (WoZ) method is a widely adopted research approach where a human Wizard ``role-plays'' a not readily available technology and interacts with participants to elicit user behaviors and probe the design space. With the growing ability for modern large language models (LLMs) to role-play, one can apply LLMs as Wizards in WoZ experiments with better scalability and lower cost than the traditional approach. However, methodological guidance on responsibly applying LLMs in WoZ experiments and a systematic evaluation of LLMs' role-playing ability are lacking. Through two LLM-powered WoZ studies, we take the first step towards identifying an experiment lifecycle for researchers to safely integrate LLMs into WoZ experiments and interpret data generated from settings that involve Wizards role-played by LLMs. We also contribute a heuristic-based evaluation framework that allows the estimation of LLMs' role-playing ability in WoZ experiments and reveals LLMs' behavior patterns at scale.

Explainable Multimodal Emotion Recognition (EMER) is an emerging task that aims to achieve reliable and accurate emotion recognition. However, due to the high annotation cost, the existing dataset (denoted as EMER-Fine) is small, making it difficult to perform supervised training. To reduce the annotation cost and expand the dataset size, this paper reviews the previous dataset construction process. Then, we simplify the annotation pipeline, avoid manual checks, and replace the closed-source models with open-source models. Finally, we build \textbf{EMER-Coarse}, a coarsely-labeled dataset containing large-scale samples. Besides the dataset, we propose a two-stage training framework \textbf{AffectGPT}. The first stage exploits EMER-Coarse to learn a coarse mapping between multimodal inputs and emotion-related descriptions; the second stage uses EMER-Fine to better align with manually-checked results. Experimental results demonstrate the effectiveness of our proposed method on the challenging EMER task. To facilitate further research, we will make the code and dataset available at: //github.com/zeroQiaoba/AffectGPT.

The recent Segment Anything Model (SAM) is a significant advancement in natural image segmentation, exhibiting potent zero-shot performance suitable for various downstream image segmentation tasks. However, directly utilizing the pretrained SAM for Infrared Small Target Detection (IRSTD) task falls short in achieving satisfying performance due to a notable domain gap between natural and infrared images. Unlike a visible light camera, a thermal imager reveals an object's temperature distribution by capturing infrared radiation. Small targets often show a subtle temperature transition at the object's boundaries. To address this issue, we propose the IRSAM model for IRSTD, which improves SAM's encoder-decoder architecture to learn better feature representation of infrared small objects. Specifically, we design a Perona-Malik diffusion (PMD)-based block and incorporate it into multiple levels of SAM's encoder to help it capture essential structural features while suppressing noise. Additionally, we devise a Granularity-Aware Decoder (GAD) to fuse the multi-granularity feature from the encoder to capture structural information that may be lost in long-distance modeling. Extensive experiments on the public datasets, including NUAA-SIRST, NUDT-SIRST, and IRSTD-1K, validate the design choice of IRSAM and its significant superiority over representative state-of-the-art methods. The source code are available at: github.com/IPIC-Lab/IRSAM.

This technical report presents the implementation of a state-of-the-art video encoder for video-text modal alignment and a video conversation framework called HiLight, which features dual visual towers. The work is divided into two main parts: 1.alignment of video and text modalities; 2.convenient and efficient way to interact with users. Our goal is to address the task of video comprehension in the context of billiards. The report includes a discussion of the concepts and the final solution developed during the task's implementation.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司