Performance-based engineering for natural hazards facilitates the design and appraisal of structures with rigorous evaluation of their uncertain structural behavior under potentially extreme stochastic loads expressed in terms of failure probabilities against stated criteria. As a result, efficient stochastic simulation schemes are central to computational frameworks that aim to estimate failure probabilities associated with multiple limit states using limited sample sets. In this work, a generalized stratified sampling scheme is proposed in which two phases of sampling are involved: the first is devoted to the generation of strata-wise samples and the estimation of strata probabilities whereas the second aims at the estimation of strata-wise failure probabilities. Phase-I sampling enables the selection of a generalized stratification variable (i.e., not necessarily belonging to the input set of random variables) for which the probability distribution is not known a priori. To improve the efficiency, Markov Chain Monte Carlo Phase-I sampling is proposed when Monte Carlo simulation is deemed infeasible and optimal Phase-II sampling is implemented based on user-specified target coefficients of variation for the limit states of interest. The expressions for these coefficients are derived with due regard to the sample correlations induced by the Markov chains and the uncertainty in the estimated strata probabilities. The proposed stochastic simulation scheme reaps the benefits of near-optimal stratified sampling for a broader choice of stratification variables in high-dimensional reliability problems with a mechanism to approximately control the accuracy of the failure probability estimators. The practicality of the scheme is demonstrated using two examples involving the estimation of failure probabilities associated with highly nonlinear responses induced by wind and seismic excitations.
We propose a sampling algorithm that achieves superior complexity bounds in all the classical settings (strongly log-concave, log-concave, Logarithmic-Sobolev inequality (LSI), Poincar\'e inequality) as well as more general settings with semi-smooth or composite potentials. Our algorithm is based on the proximal sampler introduced in~\citet{lee2021structured}. The performance of this proximal sampler is determined by that of the restricted Gaussian oracle (RGO), a key step in the proximal sampler. The main contribution of this work is an inexact realization of RGO based on approximate rejection sampling. To bound the inexactness of RGO, we establish a new concentration inequality for semi-smooth functions over Gaussian distributions, extending the well-known concentration inequality for Lipschitz functions. Applying our RGO implementation to the proximal sampler, we achieve state-of-the-art complexity bounds in almost all settings. For instance, for strongly log-concave distributions, our method has complexity bound $\tilde\mathcal{O}(\kappa d^{1/2})$ without warm start, better than the minimax bound for MALA. For distributions satisfying the LSI, our bound is $\tilde \mathcal{O}(\hat \kappa d^{1/2})$ where $\hat \kappa$ is the ratio between smoothness and the LSI constant, better than all existing bounds.
Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed with the assumption that agents' policies are based on accurate state information. However, policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial state perturbation attacks. In this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to investigate the fundamental properties of MARL under state uncertainties. Our analysis shows that the commonly used solution concepts of optimal agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this difficulty, we consider a new solution concept called robust agent policy, where agents aim to maximize the worst-case expected state value. We prove the existence of robust agent policy for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under state uncertainties. Our experiments demonstrate that our algorithm outperforms existing methods when faced with state perturbations and greatly improves the robustness of MARL policies. Our code is public on //songyanghan.github.io/what_is_solution/.
This paper examines asymmetric and time-varying dependency structures between financial returns, using a novel approach consisting of a combination of regime-switching models and the local Gaussian correlation (LGC). We propose an LGC-based bootstrap test for whether the dependence structure in financial returns across different regimes is equal. We examine this test in a Monte Carlo study, where it shows good level and power properties. We argue that this approach is more intuitive than competing approaches, typically combining regime-switching models with copula theory. Furthermore, the LGC is a semi-parametric approach, hence avoids any parametric specification of the dependence structure. We illustrate our approach using returns from the US-UK stock markets and the US stock and government bond markets. Using a two-regime model for the US-UK stock returns, the test rejects equality of the dependence structure in the two regimes. Furthermore, we find evidence of lower tail dependence in the regime associated with financial downturns in the LGC structure. For a three-regime model fitted to US stock and bond returns, the test rejects equality of the dependence structures between all regime pairs. Furthermore, we find that the LGC has a primarily positive relationship in the time period 1980-2000, mostly a negative relationship from 2000 and onwards. In addition, the regime associated with bear markets indicates less, but asymmetric dependence, clearly documenting the loss of diversification benefits in times of crisis.
Neural Processes (NPs) are appealing due to their ability to perform fast adaptation based on a context set. This set is encoded by a latent variable, which is often assumed to follow a simple distribution. However, in real-word settings, the context set may be drawn from richer distributions having multiple modes, heavy tails, etc. In this work, we provide a framework that allows NPs' latent variable to be given a rich prior defined by a graphical model. These distributional assumptions directly translate into an appropriate aggregation strategy for the context set. Moreover, we describe a message-passing procedure that still allows for end-to-end optimization with stochastic gradients. We demonstrate the generality of our framework by using mixture and Student-t assumptions that yield improvements in function modelling and test-time robustness.
Detecting adversarial samples that are carefully crafted to fool the model is a critical step to socially-secure applications. However, existing adversarial detection methods require access to sufficient training data, which brings noteworthy concerns regarding privacy leakage and generalizability. In this work, we validate that the adversarial sample generated by attack algorithms is strongly related to a specific vector in the high-dimensional inputs. Such vectors, namely UAPs (Universal Adversarial Perturbations), can be calculated without original training data. Based on this discovery, we propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs. Experimental results show that our method achieves competitive detection performance on various text classification tasks, and maintains an equivalent time consumption to normal inference.
This paper studies the statistical model of the non-centered mixture of scaled Gaussian distributions (NC-MSG). Using the Fisher-Rao information geometry associated to this distribution, we derive a Riemannian gradient descent algorithm. This algorithm is leveraged for two minimization problems. The first one is the minimization of a regularized negative log-likelihood (NLL). The latter makes the trade-off between a white Gaussian distribution and the NC-MSG. Conditions on the regularization are given so that the existence of a minimum to this problem is guaranteed without assumptions on the samples. Then, the Kullback-Leibler (KL) divergence between two NC-MSG is derived. This divergence enables us to define a minimization problem to compute centers of mass of several NC-MSGs. The proposed Riemannian gradient descent algorithm is leveraged to solve this second minimization problem. Numerical experiments show the good performance and the speed of the Riemannian gradient descent on the two problems. Finally, a Nearest centroid classifier is implemented leveraging the KL divergence and its associated center of mass. Applied on the large scale dataset Breizhcrops, this classifier shows good accuracies as well as robustness to rigid transformations of the test set.
We study the problem of learning with selectively labeled data, which arises when outcomes are only partially labeled due to historical decision-making. The labeled data distribution may substantially differ from the full population, especially when the historical decisions and the target outcome can be simultaneously affected by some unobserved factors. Consequently, learning with only the labeled data may lead to severely biased results when deployed to the full population. Our paper tackles this challenge by exploiting the fact that in many applications the historical decisions were made by a set of heterogeneous decision-makers. In particular, we analyze this setup in a principled instrumental variable (IV) framework. We establish conditions for the full-population risk of any given prediction rule to be point-identified from the observed data and provide sharp risk bounds when the point identification fails. We further propose a weighted learning approach that learns prediction rules robust to the label selection bias in both identification settings. Finally, we apply our proposed approach to a semi-synthetic financial dataset and demonstrate its superior performance in the presence of selection bias.
In this work, we explore a framework for contextual decision-making to study how the relevance and quantity of past data affects the performance of a data-driven policy. We analyze a contextual Newsvendor problem in which a decision-maker needs to trade-off between an underage and an overage cost in the face of uncertain demand. We consider a setting in which past demands observed under ``close by'' contexts come from close by distributions and analyze the performance of data-driven algorithms through a notion of context-dependent worst-case expected regret. We analyze the broad class of Weighted Empirical Risk Minimization (WERM) policies which weigh past data according to their similarity in the contextual space. This class includes classical policies such as ERM, k-Nearest Neighbors and kernel-based policies. Our main methodological contribution is to characterize exactly the worst-case regret of any WERM policy on any given configuration of contexts. To the best of our knowledge, this provides the first understanding of tight performance guarantees in any contextual decision-making problem, with past literature focusing on upper bounds via concentration inequalities. We instead take an optimization approach, and isolate a structure in the Newsvendor loss function that allows to reduce the infinite-dimensional optimization problem over worst-case distributions to a simple line search. This in turn allows us to unveil fundamental insights that were obfuscated by previous general-purpose bounds. We characterize actual guaranteed performance as a function of the contexts, as well as granular insights on the learning curve of algorithms.
The Evidential regression network (ENet) estimates a continuous target and its predictive uncertainty without costly Bayesian model averaging. However, it is possible that the target is inaccurately predicted due to the gradient shrinkage problem of the original loss function of the ENet, the negative log marginal likelihood (NLL) loss. In this paper, the objective is to improve the prediction accuracy of the ENet while maintaining its efficient uncertainty estimation by resolving the gradient shrinkage problem. A multi-task learning (MTL) framework, referred to as MT-ENet, is proposed to accomplish this aim. In the MTL, we define the Lipschitz modified mean squared error (MSE) loss function as another loss and add it to the existing NLL loss. The Lipschitz modified MSE loss is designed to mitigate the gradient conflict with the NLL loss by dynamically adjusting its Lipschitz constant. By doing so, the Lipschitz MSE loss does not disturb the uncertainty estimation of the NLL loss. The MT-ENet enhances the predictive accuracy of the ENet without losing uncertainty estimation capability on the synthetic dataset and real-world benchmarks, including drug-target affinity (DTA) regression. Furthermore, the MT-ENet shows remarkable calibration and out-of-distribution detection capability on the DTA benchmarks.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.