亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Biodiversity monitoring is crucial for tracking and counteracting adverse trends in population fluctuations. However, automatic recognition systems are rarely applied so far, and experts evaluate the generated data masses manually. Especially the support of deep learning methods for visual monitoring is not yet established in biodiversity research, compared to other areas like advertising or entertainment. In this paper, we present a deep learning pipeline for analyzing images captured by a moth scanner, an automated visual monitoring system of moth species developed within the AMMOD project. We first localize individuals with a moth detector and afterward determine the species of detected insects with a classifier. Our detector achieves up to 99.01% mean average precision and our classifier distinguishes 200 moth species with an accuracy of 93.13% on image cutouts depicting single insects. Combining both in our pipeline improves the accuracy for species identification in images of the moth scanner from 79.62% to 88.05%.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

In the era of Industrial IoT (IIoT) and Industry 4.0, ensuring secure data transmission has become a critical concern. Among other data types, images are widely transmitted and utilized across various IIoT applications, ranging from sensor-generated visual data and real-time remote monitoring to quality control in production lines. The encryption of these images is essential for maintaining operational integrity, data confidentiality, and seamless integration with analytics platforms. This paper addresses these critical concerns by proposing a robust image encryption algorithm tailored for IIoT and Cyber-Physical Systems (CPS). The algorithm combines Rule-30 cellular automata with chaotic scrambling and substitution. The Rule 30 cellular automata serves as an efficient mechanism for generating pseudo-random sequences that enable fast encryption and decryption cycles suitable for real-time sensor data in industrial settings. Most importantly, it induces non-linearity in the encryption algorithm. Furthermore, to increase the chaotic range and keyspace of the algorithm, which is vital for security in distributed industrial networks, a hybrid chaotic map, i.e., logistic-sine map is utilized. Extensive security analysis has been carried out to validate the efficacy of the proposed algorithm. Results indicate that our algorithm achieves close-to-ideal values, with an entropy of 7.99 and a correlation of 0.002. This enhances the algorithm's resilience against potential cyber-attacks in the industrial domain.

Gaussian processes are used in many machine learning applications that rely on uncertainty quantification. Recently, computational tools for working with these models in geometric settings, such as when inputs lie on a Riemannian manifold, have been developed. This raises the question: can these intrinsic models be shown theoretically to lead to better performance, compared to simply embedding all relevant quantities into $\mathbb{R}^d$ and using the restriction of an ordinary Euclidean Gaussian process? To study this, we prove optimal contraction rates for intrinsic Mat\'ern Gaussian processes defined on compact Riemannian manifolds. We also prove analogous rates for extrinsic processes using trace and extension theorems between manifold and ambient Sobolev spaces: somewhat surprisingly, the rates obtained turn out to coincide with those of the intrinsic processes, provided that their smoothness parameters are matched appropriately. We illustrate these rates empirically on a number of examples, which, mirroring prior work, show that intrinsic processes can achieve better performance in practice. Therefore, our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency of geometric Gaussian processes, particularly in settings which involve small data set sizes and non-asymptotic behavior.

The convergence of SGD based distributed training algorithms is tied to the data distribution across workers. Standard partitioning techniques try to achieve equal-sized partitions with per-class population distribution in proportion to the total dataset. Partitions having the same overall population size or even the same number of samples per class may still have Non-IID distribution in the feature space. In heterogeneous computing environments, when devices have different computing capabilities, even-sized partitions across devices can lead to the straggler problem in distributed SGD. We develop a framework for distributed SGD in heterogeneous environments based on a novel data partitioning algorithm involving submodular optimization. Our data partitioning algorithm explicitly accounts for resource heterogeneity across workers while achieving similar class-level feature distribution and maintaining class balance. Based on this algorithm, we develop a distributed SGD framework that can accelerate existing SOTA distributed training algorithms by up to 32%.

The Butterfly Effect, a concept originating from chaos theory, underscores how small changes can have significant and unpredictable impacts on complex systems. In the context of AI fairness and bias, the Butterfly Effect can stem from a variety of sources, such as small biases or skewed data inputs during algorithm development, saddle points in training, or distribution shifts in data between training and testing phases. These seemingly minor alterations can lead to unexpected and substantial unfair outcomes, disproportionately affecting underrepresented individuals or groups and perpetuating pre-existing inequalities. Moreover, the Butterfly Effect can amplify inherent biases within data or algorithms, exacerbate feedback loops, and create vulnerabilities for adversarial attacks. Given the intricate nature of AI systems and their societal implications, it is crucial to thoroughly examine any changes to algorithms or input data for potential unintended consequences. In this paper, we envision both algorithmic and empirical strategies to detect, quantify, and mitigate the Butterfly Effect in AI systems, emphasizing the importance of addressing these challenges to promote fairness and ensure responsible AI development.

Evaluating outputs of large language models (LLMs) is challenging, requiring making -- and making sense of -- many responses. Yet tools that go beyond basic prompting tend to require knowledge of programming APIs, focus on narrow domains, or are closed-source. We present ChainForge, an open-source visual toolkit for prompt engineering and on-demand hypothesis testing of text generation LLMs. ChainForge provides a graphical interface for comparison of responses across models and prompt variations. Our system was designed to support three tasks: model selection, prompt template design, and hypothesis testing (e.g., auditing). We released ChainForge early in its development and iterated on its design with academics and online users. Through in-lab and interview studies, we find that a range of people could use ChainForge to investigate hypotheses that matter to them, including in real-world settings. We identify three modes of prompt engineering and LLM hypothesis testing: opportunistic exploration, limited evaluation, and iterative refinement.

In the field of artificial intelligence (AI), the quest to understand and model data-generating processes (DGPs) is of paramount importance. Deep generative models (DGMs) have proven adept in capturing complex data distributions but often fall short in generalization and interpretability. On the other hand, causality offers a structured lens to comprehend the mechanisms driving data generation and highlights the causal-effect dynamics inherent in these processes. While causality excels in interpretability and the ability to extrapolate, it grapples with intricacies of high-dimensional spaces. Recognizing the synergistic potential, we delve into the confluence of causality and DGMs. We elucidate the integration of causal principles within DGMs, investigate causal identification using DGMs, and navigate an emerging research frontier of causality in large-scale generative models, particularly generative large language models (LLMs). We offer insights into methodologies, highlight open challenges, and suggest future directions, positioning our comprehensive review as an essential guide in this swiftly emerging and evolving area.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司