亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generative AI has received significant attention among a spectrum of diverse industrial and academic domains, thanks to the magnificent results achieved from deep generative models such as generative pre-trained transformers (GPT) and diffusion models. In this paper, we explore the applications of denoising diffusion probabilistic models (DDPMs) in wireless communication systems under practical assumptions such as hardware impairments (HWI), low-SNR regime, and quantization error. Diffusion models are a new class of state-of-the-art generative models that have already showcased notable success with some of the popular examples by OpenAI1 and Google Brain2. The intuition behind DDPM is to decompose the data generation process over small ``denoising'' steps. Inspired by this, we propose using denoising diffusion model-based receiver for a practical wireless communication scheme, while providing network resilience in low-SNR regimes, non-Gaussian noise, different HWI levels, and quantization error. We evaluate the reconstruction performance of our scheme in terms of mean-squared error (MSE) metric. Our results show that more than 25 dB improvement in MSE is achieved compared to deep neural network (DNN)-based receivers. We also highlight robust out-of-distribution performance under non-Gaussian noise.

相關內容

Generating safe behaviors for autonomous systems is important as they continue to be deployed in the real world, especially around people. In this work, we focus on developing a novel safe controller for systems where there are multiple sources of uncertainty. We formulate a novel multimodal safe control method, called the Multimodal Safe Set Algorithm (MMSSA) for the case where the agent has uncertainty over which discrete mode the system is in, and each mode itself contains additional uncertainty. To our knowledge, this is the first energy-function-based safe control method applied to systems with multimodal uncertainty. We apply our controller to a simulated human-robot interaction where the robot is uncertain of the human's true intention and each potential intention has its own additional uncertainty associated with it, since the human is not a perfectly rational actor. We compare our proposed safe controller to existing safe control methods and find that it does not impede the system performance (i.e. efficiency) while also improving the safety of the system.

Federated Learning (FL) has been recently receiving increasing consideration from the cybersecurity community as a way to collaboratively train deep learning models with distributed profiles of cyber threats, with no disclosure of training data. Nevertheless, the adoption of FL in cybersecurity is still in its infancy, and a range of practical aspects have not been properly addressed yet. Indeed, the Federated Averaging algorithm at the core of the FL concept requires the availability of test data to control the FL process. Although this might be feasible in some domains, test network traffic of newly discovered attacks cannot be always shared without disclosing sensitive information. In this paper, we address the convergence of the FL process in dynamic cybersecurity scenarios, where the trained model must be frequently updated with new recent attack profiles to empower all members of the federation with the latest detection features. To this aim, we propose FLAD (adaptive Federated Learning Approach to DDoS attack detection), an FL solution for cybersecurity applications based on an adaptive mechanism that orchestrates the FL process by dynamically assigning more computation to those members whose attacks profiles are harder to learn, without the need of sharing any test data to monitor the performance of the trained model. Using a recent dataset of DDoS attacks, we demonstrate that FLAD outperforms state-of-the-art FL algorithms in terms of convergence time and accuracy across a range of unbalanced datasets of heterogeneous DDoS attacks. We also show the robustness of our approach in a realistic scenario, where we retrain the deep learning model multiple times to introduce the profiles of new attacks on a pre-trained model.

Recently, pretraining methods for the Graph Neural Networks (GNNs) have been successful at learning effective representations from unlabeled graph data. However, most of these methods rely on pairwise relations in the graph and do not capture the underling higher-order relations between entities. Hypergraphs are versatile and expressive structures that can effectively model higher-order relationships among entities in the data. Despite the efforts to adapt GNNs to hypergraphs (HyperGNN), there are currently no fully self-supervised pretraining methods for HyperGNN on heterogeneous hypergraphs. In this paper, we present SPHH, a novel self-supervised pretraining framework for heterogeneous HyperGNNs. Our method is able to effectively capture higher-order relations among entities in the data in a self-supervised manner. SPHH is consist of two self-supervised pretraining tasks that aim to simultaneously learn both local and global representations of the entities in the hypergraph by using informative representations derived from the hypergraph structure. Overall, our work presents a significant advancement in the field of self-supervised pretraining of HyperGNNs, and has the potential to improve the performance of various graph-based downstream tasks such as node classification and link prediction tasks which are mapped to hypergraph configuration. Our experiments on two real-world benchmarks using four different HyperGNN models show that our proposed SPHH framework consistently outperforms state-of-the-art baselines in various downstream tasks. The results demonstrate that SPHH is able to improve the performance of various HyperGNN models in various downstream tasks, regardless of their architecture or complexity, which highlights the robustness of our framework.

Offline Reinforcement Learning (RL) has emerged as a promising framework for learning policies without active interactions, making it especially appealing for autonomous driving tasks. Recent successes of Transformers inspire casting offline RL as sequence modeling, which performs well in long-horizon tasks. However, they are overly optimistic in stochastic environments with incorrect assumptions that the same goal can be consistently achieved by identical actions. In this paper, we introduce an UNcertainty-awaRE deciSion Transformer (UNREST) for planning in stochastic driving environments without introducing additional transition or complex generative models. Specifically, UNREST estimates state uncertainties by the conditional mutual information between transitions and returns, and segments sequences accordingly. Discovering the `uncertainty accumulation' and `temporal locality' properties of driving environments, UNREST replaces the global returns in decision transformers with less uncertain truncated returns, to learn from true outcomes of agent actions rather than environment transitions. We also dynamically evaluate environmental uncertainty during inference for cautious planning. Extensive experimental results demonstrate UNREST's superior performance in various driving scenarios and the power of our uncertainty estimation strategy.

The use of propagandistic techniques in online communication has increased in recent years, aiming to manipulate online audiences. Efforts to automatically detect and debunk such content have been made, addressing various modeling scenarios. These include determining whether the content (text, image, or multimodal) (i) is propagandistic, (ii) employs one or more techniques, and (iii) includes techniques with identifiable spans. Significant research efforts have been devoted to the first two scenarios compared to the latter. Therefore, in this study, we focus on the task of detecting propagandistic textual spans. We investigate whether large language models such as GPT-4 can be utilized to perform the task of an annotator. For the experiments, we used an in-house developed dataset consisting of annotations from multiple annotators. Our results suggest that providing more information to the model as prompts improves the annotation agreement and performance compared to human annotations. We plan to make the annotated labels from multiple annotators, including GPT-4, available for the community.

Large Language Models (LLMs) serve as repositories of extensive world knowledge, enabling them to perform tasks such as question-answering and fact-checking. However, this knowledge can become obsolete as global contexts change. In this paper, we introduce a novel problem in the realm of continual learning: Online Continual Knowledge Learning (OCKL). This problem formulation aims to manage the dynamic nature of world knowledge in LMs under real-time constraints. We propose a new benchmark and evaluation metric designed to measure both the rate of new knowledge acquisition and the retention of previously learned knowledge. Our empirical evaluation, conducted using a variety of state-of-the-art methods, establishes robust base-lines for OCKL. Our results reveal that existing continual learning approaches are unfortunately insufficient for tackling the unique challenges posed by OCKL. We identify key factors that influence the trade-off between knowledge acquisition and retention, thereby advancing our understanding of how to train LMs in a continually evolving environment.

This paper explores the intersection of Otome Culture and artificial intelligence, particularly focusing on how Otome-oriented games fulfill the emotional needs of young women. These games, which are deeply rooted in a subcultural understanding of love, provide players with feelings of satisfaction, companionship, and protection through carefully crafted narrative structures and character development. With the proliferation of Large Language Models (LLMs), there is an opportunity to transcend traditional static game narratives and create dynamic, emotionally responsive interactions. We present a case study of Tears of Themis, where we have integrated LLM technology to enhance the interactive experience. Our approach involves augmenting existing game narratives with a Question and Answer (QA) system, enriched through data augmentation and emotional enhancement techniques, resulting in a chatbot that offers realistic and supportive companionship.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

北京阿比特科技有限公司