亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the scaling limits of stochastic gradient descent (SGD) with constant step-size in the high-dimensional regime. We prove limit theorems for the trajectories of summary statistics (i.e., finite-dimensional functions) of SGD as the dimension goes to infinity. Our approach allows one to choose the summary statistics that are tracked, the initialization, and the step-size. It yields both ballistic (ODE) and diffusive (SDE) limits, with the limit depending dramatically on the former choices. Interestingly, we find a critical scaling regime for the step-size below which the effective ballistic dynamics matches gradient flow for the population loss, but at which, a new correction term appears which changes the phase diagram. About the fixed points of this effective dynamics, the corresponding diffusive limits can be quite complex and even degenerate. We demonstrate our approach on popular examples including estimation for spiked matrix and tensor models and classification via two-layer networks for binary and XOR-type Gaussian mixture models. These examples exhibit surprising phenomena including multimodal timescales to convergence as well as convergence to sub-optimal solutions with probability bounded away from zero from random (e.g., Gaussian) initializations.

相關內容

Stochastic gradient algorithms are widely used for both optimization and sampling in large-scale learning and inference problems. However, in practice, tuning these algorithms is typically done using heuristics and trial-and-error rather than rigorous, generalizable theory. To address this gap between theory and practice, we novel insights into the effect of tuning parameters by characterizing the large-sample behavior of iterates of a very general class of preconditioned stochastic gradient algorithms with fixed step size. In the optimization setting, our results show that iterate averaging with a large fixed step size can result in statistically efficient approximation of the (local) M-estimator. In the sampling context, our results show that with appropriate choices of tuning parameters, the limiting stationary covariance can match either the Bernstein--von Mises limit of the posterior, adjustments to the posterior for model misspecification, or the asymptotic distribution of the MLE; and that with a naive tuning the limit corresponds to none of these. Moreover, we argue that an essentially independent sample from the stationary distribution can be obtained after a fixed number of passes over the dataset. We validate our asymptotic results in realistic finite-sample regimes via several experiments using simulated and real data. Overall, we demonstrate that properly tuned stochastic gradient algorithms with constant step size offer a computationally efficient and statistically robust approach to obtaining point estimates or posterior-like samples.

Neural networks are high-dimensional nonlinear dynamical systems that process information through the coordinated activity of many interconnected units. Understanding how biological and machine-learning networks function and learn requires knowledge of the structure of this coordinated activity, information contained in cross-covariances between units. Although dynamical mean field theory (DMFT) has elucidated several features of random neural networks -- in particular, that they can generate chaotic activity -- existing DMFT approaches do not support the calculation of cross-covariances. We solve this longstanding problem by extending the DMFT approach via a two-site cavity method. This reveals, for the first time, several spatial and temporal features of activity coordination, including the effective dimension, defined as the participation ratio of the spectrum of the covariance matrix. Our results provide a general analytical framework for studying the structure of collective activity in random neural networks and, more broadly, in high-dimensional nonlinear dynamical systems with quenched disorder.

We consider an analysis of variance type problem, where the sample observations are random elements in an infinite dimensional space. This scenario covers the case, where the observations are random functions. For such a problem, we propose a test based on spatial signs. We develop an asymptotic implementation as well as a bootstrap implementation and a permutation implementation of this test and investigate their size and power properties. We compare the performance of our test with that of several mean based tests of analysis of variance for functional data studied in the literature. Interestingly, our test not only outperforms the mean based tests in several non-Gaussian models with heavy tails or skewed distributions, but in some Gaussian models also. Further, we also compare the performance of our test with the mean based tests in several models involving contaminated probability distributions. Finally, we demonstrate the performance of these tests in three real datasets: a Canadian weather dataset, a spectrometric dataset on chemical analysis of meat samples and a dataset on orthotic measurements on volunteers.

We consider stochastic gradient descent and its averaging variant for binary classification problems in a reproducing kernel Hilbert space. In the traditional analysis using a consistency property of loss functions, it is known that the expected classification error converges more slowly than the expected risk even when assuming a low-noise condition on the conditional label probabilities. Consequently, the resulting rate is sublinear. Therefore, it is important to consider whether much faster convergence of the expected classification error can be achieved. In recent research, an exponential convergence rate for stochastic gradient descent was shown under a strong low-noise condition but provided theoretical analysis was limited to the squared loss function, which is somewhat inadequate for binary classification tasks. In this paper, we show an exponential convergence of the expected classification error in the final phase of the stochastic gradient descent for a wide class of differentiable convex loss functions under similar assumptions. As for the averaged stochastic gradient descent, we show that the same convergence rate holds from the early phase of training. In experiments, we verify our analyses on the $L_2$-regularized logistic regression.

In this paper, we focus on the high-dimensional double sparse structure, where the parameter of interest simultaneously encourages group-wise sparsity and element-wise sparsity in each group. Combining Gilbert-Varshamov bound and its variants, we develop a novel lower bound technique for the metric entropy of the parameter space, which is well suited for the double sparse structure over $\ell_q$-balls for $q \in [0,1]$. We prove the lower bounds on estimation error in an information theoretical manner, which is based on our proposed lower bound technique and Fano's inequality. The matching upper bounds are also established, whose proof follows from a direct analysis of the constrained least-squares estimators and results on empirical processes. Moreover, we extend the results over $\ell_q$-balls into the double sparse regression model and establish its minimax rate on the estimation error. Finally, we develop the DSIHT (Double Sparse Iterative Hard Thresholding) algorithm and show its optimality in the minimax sense for solving the double sparse linear regression.

Boosting is one of the most significant developments in machine learning. This paper studies the rate of convergence of $L_2$Boosting, which is tailored for regression, in a high-dimensional setting. Moreover, we introduce so-called \textquotedblleft post-Boosting\textquotedblright. This is a post-selection estimator which applies ordinary least squares to the variables selected in the first stage by $L_2$Boosting. Another variant is \textquotedblleft Orthogonal Boosting\textquotedblright\ where after each step an orthogonal projection is conducted. We show that both post-$L_2$Boosting and the orthogonal boosting achieve the same rate of convergence as LASSO in a sparse, high-dimensional setting. We show that the rate of convergence of the classical $L_2$Boosting depends on the design matrix described by a sparse eigenvalue constant. To show the latter results, we derive new approximation results for the pure greedy algorithm, based on analyzing the revisiting behavior of $L_2$Boosting. We also introduce feasible rules for early stopping, which can be easily implemented and used in applied work. Our results also allow a direct comparison between LASSO and boosting which has been missing from the literature. Finally, we present simulation studies and applications to illustrate the relevance of our theoretical results and to provide insights into the practical aspects of boosting. In these simulation studies, post-$L_2$Boosting clearly outperforms LASSO.

Predictive coding (PC) is an influential theory in computational neuroscience, which argues that the cortex forms unsupervised world models by implementing a hierarchical process of prediction error minimization. PC networks (PCNs) are trained in two phases. First, neural activities are updated to optimize the network's response to external stimuli. Second, synaptic weights are updated to consolidate this change in activity -- an algorithm called \emph{prospective configuration}. While previous work has shown how in various limits, PCNs can be found to approximate backpropagation (BP), recent work has demonstrated that PCNs operating in this standard regime, which does not approximate BP, nevertheless obtain competitive training and generalization performance to BP-trained networks while outperforming them on tasks such as online, few-shot, and continual learning, where brains are known to excel. Despite this promising empirical performance, little is understood theoretically about the properties and dynamics of PCNs in this regime. In this paper, we provide a comprehensive theoretical analysis of the properties of PCNs trained with prospective configuration. We first derive analytical results concerning the inference equilibrium for PCNs and a previously unknown close connection relationship to target propagation (TP). Secondly, we provide a theoretical analysis of learning in PCNs as a variant of generalized expectation-maximization and use that to prove the convergence of PCNs to critical points of the BP loss function, thus showing that deep PCNs can, in theory, achieve the same generalization performance as BP, while maintaining their unique advantages.

This paper studies \emph{linear} and \emph{affine} error-correcting codes for correcting synchronization errors such as insertions and deletions. We call such codes linear/affine insdel codes. Linear codes that can correct even a single deletion are limited to have information rate at most $1/2$ (achieved by the trivial 2-fold repetition code). Previously, it was (erroneously) reported that more generally no non-trivial linear codes correcting $k$ deletions exist, i.e., that the $(k+1)$-fold repetition codes and its rate of $1/(k+1)$ are basically optimal for any $k$. We disprove this and show the existence of binary linear codes of length $n$ and rate just below $1/2$ capable of correcting $\Omega(n)$ insertions and deletions. This identifies rate $1/2$ as a sharp threshold for recovery from deletions for linear codes, and reopens the quest for a better understanding of the capabilities of linear codes for correcting insertions/deletions. We prove novel outer bounds and existential inner bounds for the rate vs. (edit) distance trade-off of linear insdel codes. We complement our existential results with an efficient synchronization-string-based transformation that converts any asymptotically-good linear code for Hamming errors into an asymptotically-good linear code for insdel errors. Lastly, we show that the $\frac{1}{2}$-rate limitation does not hold for affine codes by giving an explicit affine code of rate $1-\epsilon$ which can efficiently correct a constant fraction of insdel errors.

Inference of the marginal probability distribution is defined as the calculation of the probability of a subset of the variables and is relevant for handling missing data and hidden variables. While inference of the marginal probability distribution is crucial for various problems in machine learning and statistics, its exact computation is generally not feasible for categorical variables in Bayesian networks due to the NP-hardness of this task. We develop a divide-and-conquer approach using the graphical properties of Bayesian networks to split the computation of the marginal probability distribution into sub-calculations of lower dimensionality, thus reducing the overall computational complexity. Exploiting this property, we present an efficient and scalable algorithm for calculating the marginal probability distribution for categorical variables. The novel method is compared against state-of-the-art approximate inference methods in a benchmarking study, where it displays superior performance. As an immediate application, we demonstrate how our method can be used to classify incomplete data against Bayesian networks and use this approach for identifying the cancer subtype of kidney cancer patient samples.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

北京阿比特科技有限公司