亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data assimilation provides algorithms for widespread applications in various fields. It is of practical use to deal with a large amount of information in the complex system that is hard to estimate. Weather forecasting is one of the applications, where the prediction of meteorological data are corrected given the observations. Numerous approaches are contained in data assimilation. One specific sequential method is the Kalman Filter. The core is to estimate unknown information with the new data that is measured and the prior data that is predicted. As a matter of fact, there are different improved methods in the Kalman Filter. In this project, the Ensemble Kalman Filter with perturbed observations is considered. It is achieved by Monte Carlo simulation. In this method, the ensemble is involved in the calculation instead of the state vectors. In addition, the measurement with perturbation is viewed as the suitable observation. These changes compared with the Linear Kalman Filter make it more advantageous in that applications are not restricted in linear systems any more and less time is taken when the data are calculated by computers. The thesis seeks to develop the Ensemble Kalman Filter with perturbed observation gradually. With the Mathematical preliminaries including the introduction of dynamical systems, the Linear Kalman Filter is built. Meanwhile, the prediction and analysis processes are derived. After that, we use the analogy thoughts to lead in the non-linear Ensemble Kalman Filter with perturbed observations. Lastly, a classic Lorenz 63 model is illustrated by MATLAB. In the example, we experiment on the number of ensemble members and seek to investigate the relationships between the error of variance and the number of ensemble members. We reach the conclusion that on a limited scale the larger number of ensemble members indicates the smaller error of prediction.

相關內容

是一種(zhong)高效率(lv)的(de)(de)遞歸濾波器(qi)(自回歸濾波器(qi)),它能(neng)夠從一系(xi)列(lie)的(de)(de)不完(wan)全及包含噪聲(sheng)的(de)(de)測量中,估計動態系(xi)統的(de)(de)狀態。

Communication compression is an essential strategy for alleviating communication overhead by reducing the volume of information exchanged between computing nodes in large-scale distributed stochastic optimization. Although numerous algorithms with convergence guarantees have been obtained, the optimal performance limit under communication compression remains unclear. In this paper, we investigate the performance limit of distributed stochastic optimization algorithms employing communication compression. We focus on two main types of compressors, unbiased and contractive, and address the best-possible convergence rates one can obtain with these compressors. We establish the lower bounds for the convergence rates of distributed stochastic optimization in six different settings, combining strongly-convex, generally-convex, or non-convex functions with unbiased or contractive compressor types. To bridge the gap between lower bounds and existing algorithms' rates, we propose NEOLITHIC, a nearly optimal algorithm with compression that achieves the established lower bounds up to logarithmic factors under mild conditions. Extensive experimental results support our theoretical findings. This work provides insights into the theoretical limitations of existing compressors and motivates further research into fundamentally new compressor properties.

Originally introduced as a neural network for ensemble learning, mixture of experts (MoE) has recently become a fundamental building block of highly successful modern deep neural networks for heterogeneous data analysis in several applications, including those in machine learning, statistics, bioinformatics, economics, and medicine. Despite its popularity in practice, a satisfactory level of understanding of the convergence behavior of Gaussian-gated MoE parameter estimation is far from complete. The underlying reason for this challenge is the inclusion of covariates in the Gaussian gating and expert networks, which leads to their intrinsically complex interactions via partial differential equations with respect to their parameters. We address these issues by designing novel Voronoi loss functions to accurately capture heterogeneity in the maximum likelihood estimator (MLE) for resolving parameter estimation in these models. Our results reveal distinct behaviors of the MLE under two settings: the first setting is when all the location parameters in the Gaussian gating are non-zeros while the second setting is when there exists at least one zero-valued location parameter. Notably, these behaviors can be characterized by the solvability of two different systems of polynomial equations. Finally, we conduct a simulation study to verify our theoretical results.

Time-varying parameter (TVP) regression models can involve a huge number of coefficients. Careful prior elicitation is required to yield sensible posterior and predictive inferences. In addition, the computational demands of Markov Chain Monte Carlo (MCMC) methods mean their use is limited to the case where the number of predictors is not too large. In light of these two concerns, this paper proposes a new dynamic shrinkage prior which reflects the empirical regularity that TVPs are typically sparse (i.e. time variation may occur only episodically and only for some of the coefficients). A scalable MCMC algorithm is developed which is capable of handling very high dimensional TVP regressions or TVP Vector Autoregressions. In an exercise using artificial data we demonstrate the accuracy and computational efficiency of our methods. In an application involving the term structure of interest rates in the eurozone, we find our dynamic shrinkage prior to effectively pick out small amounts of parameter change and our methods to forecast well.

The emerging concept of Over-the-Air (OtA) computation has shown great potential for achieving resource-efficient data aggregation across large wireless networks. However, current research in this area has been limited to the standard many-to-one topology, where multiple nodes transmit data to a single receiver. In this study, we address the problem of applying OtA computation to scenarios with multiple receivers, and propose a novel communication design that exploits joint precoding and decoding over multiple time slots. To determine the optimal precoding and decoding vectors, we formulate an optimization problem that aims to minimize the mean squared error of the desired computations while satisfying the unbiasedness condition and power constraints. Our proposed multi-slot design is shown to be effective in saving communication resources (e.g., time slots) and achieving smaller estimation errors compared to the baseline approach of separating different receivers over time.

The state-of-the-art coding schemes for topological interference management (TIM) problems are usually handcrafted for specific families of network topologies, relying critically on experts' domain knowledge. This inevitably restricts the potential wider applications to wireless communication systems, due to the limited generalizability. This work makes the first attempt to advocate a novel intelligent coding approach to mimic topological interference alignment (IA) via local graph coloring algorithms, leveraging the new advances of graph neural networks (GNNs) and reinforcement learning (RL). The proposed LCG framework is then generalized to discover new IA coding schemes, including one-to-one vector IA and subspace IA. The extensive experiments demonstrate the excellent generalizability and transferability of the proposed approach, where the parameterized GNNs trained by small size TIM instances are able to work well on new unseen network topologies with larger size.

Scaling to arbitrarily large bundle adjustment problems requires data and compute to be distributed across multiple devices. Centralized methods in prior works are only able to solve small or medium size problems due to overhead in computation and communication. In this paper, we present a fully decentralized method that alleviates computation and communication bottlenecks to solve arbitrarily large bundle adjustment problems. We achieve this by reformulating the reprojection error and deriving a novel surrogate function that decouples optimization variables from different devices. This function makes it possible to use majorization minimization techniques and reduces bundle adjustment to independent optimization subproblems that can be solved in parallel. We further apply Nesterov's acceleration and adaptive restart to improve convergence while maintaining its theoretical guarantees. Despite limited peer-to-peer communication, our method has provable convergence to first-order critical points under mild conditions. On extensive benchmarks with public datasets, our method converges much faster than decentralized baselines with similar memory usage and communication load. Compared to centralized baselines using a single device, our method, while being decentralized, yields more accurate solutions with significant speedups of up to 940.7x over Ceres and 175.2x over DeepLM. Code: //github.com/facebookresearch/DBA.

When estimating quantities and fields that are difficult to measure directly, such as the fluidity of ice, from point data sources, such as satellite altimetry, it is important to solve a numerical inverse problem that is formulated with Bayesian consistency. Otherwise, the resultant probability density function for the difficult to measure quantity or field will not be appropriately clustered around the truth. In particular, the inverse problem should be formulated by evaluating the numerical solution at the true point locations for direct comparison with the point data source. If the data are first fitted to a gridded or meshed field on the computational grid or mesh, and the inverse problem formulated by comparing the numerical solution to the fitted field, the benefits of additional point data values below the grid density will be lost. We demonstrate, with examples in the fields of groundwater hydrology and glaciology, that a consistent formulation can increase the accuracy of results and aid discourse between modellers and observationalists. To do this, we bring point data into the finite element method ecosystem as discontinuous fields on meshes of disconnected vertices. Point evaluation can then be formulated as a finite element interpolation operation (dual-evaluation). This new abstraction is well-suited to automation, including automatic differentiation. We demonstrate this through implementation in Firedrake, which generates highly optimised code for solving PDEs with the finite element method. Our solution integrates with dolfin-adjoint/pyadjoint, allowing PDE-constrained optimisation problems, such as data assimilation, to be solved through forward and adjoint mode automatic differentiation.

Although Transformer-based methods have significantly improved state-of-the-art results for long-term series forecasting, they are not only computationally expensive but more importantly, are unable to capture the global view of time series (e.g. overall trend). To address these problems, we propose to combine Transformer with the seasonal-trend decomposition method, in which the decomposition method captures the global profile of time series while Transformers capture more detailed structures. To further enhance the performance of Transformer for long-term prediction, we exploit the fact that most time series tend to have a sparse representation in well-known basis such as Fourier transform, and develop a frequency enhanced Transformer. Besides being more effective, the proposed method, termed as Frequency Enhanced Decomposed Transformer ({\bf FEDformer}), is more efficient than standard Transformer with a linear complexity to the sequence length. Our empirical studies with six benchmark datasets show that compared with state-of-the-art methods, FEDformer can reduce prediction error by $14.8\%$ and $22.6\%$ for multivariate and univariate time series, respectively. the code will be released soon.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

北京阿比特科技有限公司