亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $f=(f_0,f_1,\dots, f_{\nu-1})$ be a collection of one-to-one functions from some space~$X$ into itself such that the sets $f_j(X)$ are disjoint. If $w=w_1w_2\cdots w_k$ is a word on the alphabet $\{0,1,\dots,\nu-1\}$, let $\Phi_{f,w} = f_{w_1}\circ f_{w_2}\circ\cdots\circ f_{w_k}$. Given a function~$F$ of which we know that it can be written as $\Phi_{f,w}$, it is easy to recover~$w$. We give some examples of this situation where everything can be scrambled up by using some private key to get a new system $g=(g_1,g_2,\dots,g_{\nu-1})$ on another set~$Y$ in such a way that the images of the $g_j$ are no longer disjoint. We define a cryptosystem whose public key is~$g$. The message to be encrypted is a word~$w$ and the associated cryptogram is $\Phi_{g,w}$. The private key allows to recover $\Phi_{f,w}$ from $\Phi_{g,w}$.

相關內容

This paper studies the prediction of a target $\mathbf{z}$ from a pair of random variables $(\mathbf{x},\mathbf{y})$, where the ground-truth predictor is additive $\mathbb{E}[\mathbf{z} \mid \mathbf{x},\mathbf{y}] = f_\star(\mathbf{x}) +g_{\star}(\mathbf{y})$. We study the performance of empirical risk minimization (ERM) over functions $f+g$, $f \in F$ and $g \in G$, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class $F$ is "simpler" than $G$ (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogeneous covariate shifts} in which the shift in $\mathbf{x}$ is much greater than that in $\mathbf{y}$. Our analysis proceeds by demonstrating that ERM behaves qualitatively similarly to orthogonal machine learning: the rate at which ERM recovers the $f$-component of the predictor has only a lower-order dependence on the complexity of the class $G$, adjusted for partial non-indentifiability introduced by the additive structure. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.

For a set of points in $\mathbb{R}^d$, the Euclidean $k$-means problems consists of finding $k$ centers such that the sum of distances squared from each data point to its closest center is minimized. Coresets are one the main tools developed recently to solve this problem in a big data context. They allow to compress the initial dataset while preserving its structure: running any algorithm on the coreset provides a guarantee almost equivalent to running it on the full data. In this work, we study coresets in a fully-dynamic setting: points are added and deleted with the goal to efficiently maintain a coreset with which a k-means solution can be computed. Based on an algorithm from Henzinger and Kale [ESA'20], we present an efficient and practical implementation of a fully dynamic coreset algorithm, that improves the running time by up to a factor of 20 compared to our non-optimized implementation of the algorithm by Henzinger and Kale, without sacrificing more than 7% on the quality of the k-means solution.

In the Trivially Perfect Editing problem one is given an undirected graph $G = (V,E)$ and an integer $k$ and seeks to add or delete at most $k$ edges in $G$ to obtain a trivially perfect graph. In a recent work, Dumas, Perez and Todinca [Algorithmica 2023] proved that this problem admits a kernel with $O(k^3)$ vertices. This result heavily relies on the fact that the size of trivially perfect modules can be bounded by $O(k^2)$ as shown by Drange and Pilipczuk [Algorithmica 2018]. To obtain their cubic vertex-kernel, Dumas, Perez and Todinca [Algorithmica 2023] then showed that a more intricate structure, so-called \emph{comb}, can be reduced to $O(k^2)$ vertices. In this work we show that the bound can be improved to $O(k)$ for both aforementioned structures and thus obtain a kernel with $O(k^2)$ vertices. Our approach relies on the straightforward yet powerful observation that any large enough structure contains unaffected vertices whose neighborhood remains unchanged by an editing of size $k$, implying strong structural properties.

The modular subset sum problem consists of deciding, given a modulus $m$, a multiset $S$ of $n$ integers in $0..m-1$, and a target integer $t$, whether there exists a subset of $S$ with elements summing to $t \mod m $, and to report such a set if it exists. We give a simple $O(m \log m)$-time with high probability (w.h.p.) algorithm for the modular subset sum problem. This builds on and improves on a previous $O(m \log^7 m)$ w.h.p. algorithm from Axiotis, Backurs, Jin, Tzamos, and Wu (SODA 19). Our method utilizes the ADT of the dynamic strings structure of Gawrychowski et al. (SODA~18). However, as this structure is rather complicated we present a much simpler alternative which we call the Data Dependent Tree. As an application, we consider the computational version of a fundamental theorem in zero-sum Ramsey theory. The Erd\H{o}s-Ginzburg-Ziv Theorem states that a multiset of $2n - 1$ integers always contains a subset of cardinality exactly $n$ whose values sum to a multiple of $n$. We give an algorithm for finding such a subset in time $O(n \log n)$ w.h.p. which improves on an $O(n^2)$ algorithm due to Del Lungo, Marini, and Mori (Disc. Math. 09).

Given a graph $G=(V,E)$ and an integer $k$, the Cluster Editing problem asks whether we can transform $G$ into a union of vertex-disjoint cliques by at most $k$ modifications (edge deletions or insertions). In this paper, we study the following variant of Cluster Editing. We are given a graph $G=(V,E)$, a packing $\cal H$ of modification-disjoint induced $P_3$s (no pair of $P_3$s in $\cal H$ share an edge or non-edge) and an integer $\ell$. The task is to decide whether $G$ can be transformed into a union of vertex-disjoint cliques by at most $\ell+|\cal H|$ modifications (edge deletions or insertions). We show that this problem is NP-hard even when $\ell=0$ (in which case the problem asks to turn $G$ into a disjoint union of cliques by performing exactly one edge deletion or insertion per element of $\cal H$) and when each vertex is in at most 23 $P_3$s of the packing. This answers negatively a question of van Bevern, Froese, and Komusiewicz (CSR 2016, ToCS 2018), repeated by C. Komusiewicz at Shonan meeting no. 144 in March 2019. We then initiate the study to find the largest integer $c$ such that the problem remains tractable when restricting to packings such that each vertex is in at most $c$ packed $P_3$s. Here packed $P_3$s are those belonging to the packing $\cal H$. Van Bevern et al. showed that the case $c = 1$ is fixed-parameter tractable with respect to $\ell$ and we show that the case $c = 2$ is solvable in $|V|^{2\ell + O(1)}$ time.

In this paper, we consider the counting function $E_P(y) = |P_{y} \cap Z^{n_x}|$ for a parametric polyhedron $P_{y} = \{x \in R^{n_x} \colon A x \leq b + B y\}$, where $y \in R^{n_y}$. We give a new representation of $E_P(y)$, called a \emph{piece-wise step-polynomial with periodic coefficients}, which is a generalization of piece-wise step-polynomials and integer/rational Ehrhart's quasi-polynomials. It gives the fastest way to calculate $E_P(y)$ in certain scenarios. The most important cases are the following: 1) We show that, for the parametric polyhedron $P_y$ defined by a standard-form system $A x = y,\, x \geq 0$ with a fixed number of equalities, the function $E_P(y)$ can be represented by a polynomial-time computable function. In turn, such a representation of $E_P(y)$ can be constructed by an $poly\bigl(n, \|A\|_{\infty}\bigr)$-time algorithm; 2) Assuming again that the number of equalities is fixed, we show that integer/rational Ehrhart's quasi-polynomials of a polytope can be computed by FPT-algorithms, parameterized by sub-determinants of $A$ or its elements; 3) Our representation of $E_P$ is more efficient than other known approaches, if $A$ has bounded elements, especially if it is sparse in addition. Additionally, we provide a discussion about possible applications in the area of compiler optimization. In some "natural" assumptions on a program code, our approach has the fastest complexity bounds.

For some $\epsilon > 10^{-36}$ we give a randomized $3/2-\epsilon$ approximation algorithm for metric TSP.

Let $G$ be a graph and $S\subseteq V(G)$ with $|S|\geq 2$. Then the trees $T_1, T_2, \cdots, T_\ell$ in $G$ are \emph{internally disjoint Steiner trees} connecting $S$ (or $S$-Steiner trees) if $E(T_i) \cap E(T_j )=\emptyset$ and $V(T_i)\cap V(T_j)=S$ for every pair of distinct integers $i,j$, $1 \leq i, j \leq \ell$. Similarly, if we only have the condition $E(T_i) \cap E(T_j )=\emptyset$ but without the condition $V(T_i)\cap V(T_j)=S$, then they are \emph{edge-disjoint Steiner trees}. The \emph{generalized $k$-connectivity}, denoted by $\kappa_k(G)$, of a graph $G$, is defined as $\kappa_k(G)=\min\{\kappa_G(S)|S \subseteq V(G) \ \textrm{and} \ |S|=k \}$, where $\kappa_G(S)$ is the maximum number of internally disjoint $S$-Steiner trees. The \emph{generalized local edge-connectivity} $\lambda_{G}(S)$ is the maximum number of edge-disjoint Steiner trees connecting $S$ in $G$. The {\it generalized $k$-edge-connectivity} $\lambda_k(G)$ of $G$ is defined as $\lambda_k(G)=\min\{\lambda_{G}(S)\,|\,S\subseteq V(G) \ and \ |S|=k\}$. These measures are generalizations of the concepts of connectivity and edge-connectivity, and they and can be used as measures of vulnerability of networks. It is, in general, difficult to compute these generalized connectivities. However, there are precise results for some special classes of graphs. In this paper, we obtain the exact value of $\lambda_{k}(S(n,\ell))$ for $3\leq k\leq \ell^n$, and the exact value of $\kappa_{k}(S(n,\ell))$ for $3\leq k\leq \ell$, where $S(n, \ell)$ is the Sierpi\'{n}ski graphs with order $\ell^n$. As a direct consequence, these graphs provide additional interesting examples when $\lambda_{k}(S(n,\ell))=\kappa_{k}(S(n,\ell))$. We also study the some network properties of Sierpi\'{n}ski graphs.

Brown and Walker (1997) showed that GMRES determines a least squares solution of $ A x = b $ where $ A \in {\bf R}^{n \times n} $ without breakdown for arbitrary $ b, x_0 \in {\bf R}^n $ if and only if $A$ is range-symmetric, i.e. $ {\cal R} (A^{\rm T}) = {\cal R} (A) $, where $ A $ may be singular and $ b $ may not be in the range space ${\cal R} A)$ of $A$. In this paper, we propose applying GMRES to $ A C A^{\rm T} z = b $, where $ C \in {\bf R}^{n \times n} $ is symmetric positive definite. This determines a least squares solution $ x = CA^{\rm T} z $ of $ A x = b $ without breakdown for arbitrary (singular) matrix $A \in {\bf R}^{n \times n}$ and $ b \in {\bf R}^n $. To make the method numerically stable, we propose using the pseudoinverse with an appropriate threshold parameter to suppress the influence of tiny singular values when solving the severely ill-conditioned Hessenberg systems which arise in the Arnoldi process of GMRES when solving inconsistent range-symmetric systems. Numerical experiments show that the method taking $C$ to be the identity matrix gives the least squares solution even when $A$ is not range-symmetric, including the case when $ {\rm index}(A) >1$.

Let ${\mathcal P}$ be a family of probability measures on a measurable space $(S,{\mathcal A}).$ Given a Banach space $E,$ a functional $f:E\mapsto {\mathbb R}$ and a mapping $\theta: {\mathcal P}\mapsto E,$ our goal is to estimate $f(\theta(P))$ based on i.i.d. observations $X_1,\dots, X_n\sim P, P\in {\mathcal P}.$ In particular, if ${\mathcal P}=\{P_{\theta}: \theta\in \Theta\}$ is an identifiable statistical model with parameter set $\Theta\subset E,$ one can consider the mapping $\theta(P)=\theta$ for $P\in {\mathcal P}, P=P_{\theta},$ resulting in a problem of estimation of $f(\theta)$ based on i.i.d. observations $X_1,\dots, X_n\sim P_{\theta}, \theta\in \Theta.$ Given a smooth functional $f$ and estimators $\hat \theta_n(X_1,\dots, X_n), n\geq 1$ of $\theta(P),$ we use these estimators, the sample split and the Taylor expansion of $f(\theta(P))$ of a proper order to construct estimators $T_f(X_1,\dots, X_n)$ of $f(\theta(P)).$ For these estimators and for a functional $f$ of smoothness $s\geq 1,$ we prove upper bounds on the $L_p$-errors of estimator $T_f(X_1,\dots, X_n)$ under certain moment assumptions on the base estimators $\hat \theta_n.$ We study the performance of estimators $T_f(X_1,\dots, X_n)$ in several concrete problems, showing their minimax optimality and asymptotic efficiency. In particular, this includes functional estimation in high-dimensional models with many low dimensional components, functional estimation in high-dimensional exponential families and estimation of functionals of covariance operators in infinite-dimensional subgaussian models.

北京阿比特科技有限公司