亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modeling and analyzing long sequences of text is an essential task for Natural Language Processing. Success in capturing long text dynamics using neural language models will facilitate many downstream tasks such as coherence evaluation, text generation, machine translation and so on. This paper presents a novel approach to model sequences through a stochastic process. We introduce a likelihood-based training objective for the text encoder and design a more thorough measurement (score) for long text evaluation compared to the previous approach. The proposed training objective effectively preserves the sequence coherence, while the new score comprehensively captures both temporal and spatial dependencies. Theoretical properties of our new score show its advantages in sequence evaluation. Experimental results show superior performance in various sequence evaluation tasks, including global and local discrimination within and between documents of different lengths. We also demonstrate the encoder achieves competitive results on discriminating human and AI written text.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Semantic entity recognition is an important task in the field of visually-rich document understanding. It distinguishes the semantic types of text by analyzing the position relationship between text nodes and the relation between text content. The existing document understanding models mainly focus on entity categories while ignoring the extraction of entity boundaries. We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time. It can conduct a more detailed analysis of the document text representation analyzed by the upstream model and achieves a better performance of semantic information. We apply this method on the basis of GraphLayoutLM to construct a new semantic entity recognition model HGALayoutLM. Our experiment results on FUNSD, CORD, XFUND and SROIE show that our method can effectively improve the performance of semantic entity recognition tasks based on the original model. The results of HGALayoutLM on FUNSD and XFUND reach the new state-of-the-art results.

Extracting multiple relations from text sentences is still a challenge for current Open Relation Extraction (Open RE) tasks. In this paper, we develop several Open RE models based on the bidirectional LSTM-CRF (BiLSTM-CRF) neural network and different contextualized word embedding methods. We also propose a new tagging scheme to solve overlapping problems and enhance models' performance. From the evaluation results and comparisons between models, we select the best combination of tagging scheme, word embedder, and BiLSTM-CRF network to achieve an Open RE model with a remarkable extracting ability on multiple-relation sentences.

We present and evaluate a method called grammar masking, which is used to guide large language models (LLMs) toward producing syntactically correct models for a given context-free grammar. Prompt engineering methods such as few-shot learning or priming can be used to improve the chances of an LLM producing correct syntax, but the more complex the grammar, the more time-consuming and less promising these methods become. Previous work is focused primarily on the usage of either language model training or prompt engineering. In this work, a method is presented that restricts the output to a given grammar using constrained decoding to ensure the output adheres to a valid syntax. We use several DSLs built with MontiCore and task multiple LLMs to produce models with and without constrained decoding. A corresponding parser is used to confirm the syntactic correctness of each model. We show that grammar masking can dramatically improve the modeling capabilities of several LLMs, reducing the need for well-refined prompting while increasing the chance of producing correct models.

Federated Learning is widely employed to tackle distributed sensitive data. Existing methods primarily focus on addressing in-federation data heterogeneity. However, we observed that they suffer from significant performance degradation when applied to unseen clients for out-of-federation (OOF) generalization. The recent attempts to address generalization to unseen clients generally struggle to scale up to large-scale distributed settings due to high communication or computation costs. Moreover, methods that scale well often demonstrate poor generalization capability. To achieve OOF-resiliency in a scalable manner, we propose Topology-aware Federated Learning (TFL) that leverages client topology - a graph representing client relationships - to effectively train robust models against OOF data. We formulate a novel optimization problem for TFL, consisting of two key modules: Client Topology Learning, which infers the client relationships in a privacy-preserving manner, and Learning on Client Topology, which leverages the learned topology to identify influential clients and harness this information into the FL optimization process to efficiently build robust models. Empirical evaluation on a variety of real-world datasets verifies TFL's superior OOF robustness and scalability.

Protecting intellectual property (IP) of text such as articles and code is increasingly important, especially as sophisticated attacks become possible, such as paraphrasing by large language models (LLMs) or even unauthorized training of LLMs on copyrighted text to infringe such IP. However, existing text watermarking methods are not robust enough against such attacks nor scalable to millions of users for practical implementation. In this paper, we propose Waterfall, the first training-free framework for robust and scalable text watermarking applicable across multiple text types (e.g., articles, code) and languages supportable by LLMs, for general text and LLM data provenance. Waterfall comprises several key innovations, such as being the first to use LLM as paraphrasers for watermarking along with a novel combination of techniques that are surprisingly effective in achieving robust verifiability and scalability. We empirically demonstrate that Waterfall achieves significantly better scalability, robust verifiability, and computational efficiency compared to SOTA article-text watermarking methods, and also showed how it could be directly applied to the watermarking of code.

With the rapid development of the internet in the past decade, it has become increasingly important to extract valuable information from vast resources efficiently, which is crucial for establishing a comprehensive digital ecosystem, particularly in the context of research surveys and comprehension. The foundation of these tasks focuses on accurate extraction and deep mining of data from scientific documents, which are essential for building a robust data infrastructure. However, parsing raw data or extracting data from complex scientific documents have been ongoing challenges. Current data extraction methods for scientific documents typically use rule-based (RB) or machine learning (ML) approaches. However, using rule-based methods can incur high coding costs for articles with intricate typesetting. Conversely, relying solely on machine learning methods necessitates annotation work for complex content types within the scientific document, which can be costly. Additionally, few studies have thoroughly defined and explored the hierarchical layout within scientific documents. The lack of a comprehensive definition of the internal structure and elements of the documents indirectly impacts the accuracy of text classification and object recognition tasks. From the perspective of analyzing the standard layout and typesetting used in the specified publication, we propose a new document layout analysis framework called CTBR(Compartment & Text Blocks Refinement). Firstly, we define scientific documents into hierarchical divisions: base domain, compartment, and text blocks. Next, we conduct an in-depth exploration and classification of the meanings of text blocks. Finally, we utilize the results of text block classification to implement object recognition within scientific documents based on rule-based compartment segmentation.

TPMS is consistently described in the functional representation (F-rep) format, while modern CAD/CAM/CAE tools are built upon the boundary representation (B-rep) format. To solve this issue, translating TPMS to STEP is needed, called TPMS2STEP. This paper provides constraint matrices and convergence proof of TPMS2STEP so that $C^2$ continuity and an error bound of $2\epsilon$ on the deviation can be ensured during the translation.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

北京阿比特科技有限公司