Emotion recognition plays a crucial role in various domains of human-robot interaction. In long-term interactions with humans, robots need to respond continuously and accurately, however, the mainstream emotion recognition methods mostly focus on short-term emotion recognition, disregarding the context in which emotions are perceived. Humans consider that contextual information and different contexts can lead to completely different emotional expressions. In this paper, we introduce self context-aware model (SCAM) that employs a two-dimensional emotion coordinate system for anchoring and re-labeling distinct emotions. Simultaneously, it incorporates its distinctive information retention structure and contextual loss. This approach has yielded significant improvements across audio, video, and multimodal. In the auditory modality, there has been a notable enhancement in accuracy, rising from 63.10% to 72.46%. Similarly, the visual modality has demonstrated improved accuracy, increasing from 77.03% to 80.82%. In the multimodal, accuracy has experienced an elevation from 77.48% to 78.93%. In the future, we will validate the reliability and usability of SCAM on robots through psychology experiments.
Current deep neural networks (DNNs) are overparameterized and use most of their neuronal connections during inference for each task. The human brain, however, developed specialized regions for different tasks and performs inference with a small fraction of its neuronal connections. We propose an iterative pruning strategy introducing a simple importance-score metric that deactivates unimportant connections, tackling overparameterization in DNNs and modulating the firing patterns. The aim is to find the smallest number of connections that is still capable of solving a given task with comparable accuracy, i.e. a simpler subnetwork. We achieve comparable performance for LeNet architectures on MNIST, and significantly higher parameter compression than state-of-the-art algorithms for VGG and ResNet architectures on CIFAR-10/100 and Tiny-ImageNet. Our approach also performs well for the two different optimizers considered -- Adam and SGD. The algorithm is not designed to minimize FLOPs when considering current hardware and software implementations, although it performs reasonably when compared to the state of the art.
Regression methods are fundamental for scientific and technological applications. However, fitted models can be highly unreliable outside of their training domain, and hence the quantification of their uncertainty is crucial in many of their applications. Based on the solution of a constrained optimization problem, we propose "prediction rigidities" as a method to obtain uncertainties of arbitrary pre-trained regressors. We establish a strong connection between our framework and Bayesian inference, and we develop a last-layer approximation that allows the new method to be applied to neural networks. This extension affords cheap uncertainties without any modification to the neural network itself or its training procedure. We show the effectiveness of our method on a wide range of regression tasks, ranging from simple toy models to applications in chemistry and meteorology.
The exponential growth in scientific publications poses a severe challenge for human researchers. It forces attention to more narrow sub-fields, which makes it challenging to discover new impactful research ideas and collaborations outside one's own field. While there are ways to predict a scientific paper's future citation counts, they need the research to be finished and the paper written, usually assessing impact long after the idea was conceived. Here we show how to predict the impact of onsets of ideas that have never been published by researchers. For that, we developed a large evolving knowledge graph built from more than 21 million scientific papers. It combines a semantic network created from the content of the papers and an impact network created from the historic citations of papers. Using machine learning, we can predict the dynamic of the evolving network into the future with high accuracy, and thereby the impact of new research directions. We envision that the ability to predict the impact of new ideas will be a crucial component of future artificial muses that can inspire new impactful and interesting scientific ideas.
In today's digital world, social media plays a significant role in facilitating communication and content sharing. However, the exponential rise in user-generated content has led to challenges in maintaining a respectful online environment. In some cases, users have taken advantage of anonymity in order to use harmful language, which can negatively affect the user experience and pose serious social problems. Recognizing the limitations of manual moderation, automatic detection systems have been developed to tackle this problem. Nevertheless, several obstacles persist, including the absence of a universal definition for harmful language, inadequate datasets across languages, the need for detailed annotation guideline, and most importantly, a comprehensive framework. This study aims to address these challenges by introducing, for the first time, a detailed framework adaptable to any language. This framework encompasses various aspects of harmful language detection. A key component of the framework is the development of a general and detailed annotation guideline. Additionally, the integration of sentiment analysis represents a novel approach to enhancing harmful language detection. Also, a definition of harmful language based on the review of different related concepts is presented. To demonstrate the effectiveness of the proposed framework, its implementation in a challenging low-resource language is conducted. We collected a Persian dataset and applied the annotation guideline for harmful detection and sentiment analysis. Next, we present baseline experiments utilizing machine and deep learning methods to set benchmarks. Results prove the framework's high performance, achieving an accuracy of 99.4% in offensive language detection and 66.2% in sentiment analysis.
Inspired by the necessity of morphological adaptation in animals, a growing body of work has attempted to expand robot training to encompass physical aspects of a robot's design. However, reinforcement learning methods capable of optimizing the 3D morphology of a robot have been restricted to reorienting or resizing the limbs of a predetermined and static topological genus. Here we show policy gradients for designing freeform robots with arbitrary external and internal structure. This is achieved through actions that deposit or remove bundles of atomic building blocks to form higher-level nonparametric macrostructures such as appendages, organs and cavities. Although results are provided for open loop control only, we discuss how this method could be adapted for closed loop control and sim2real transfer to physical machines in future.
Variable selection has played a critical role in modern statistical learning and scientific discoveries. Numerous regularization and Bayesian variable selection methods have been developed in the past two decades for variable selection, but most of these methods consider selecting variables for only one response. As more data is being collected nowadays, it is common to analyze multiple related responses from the same study. Existing multivariate variable selection methods select variables for all responses without considering the possible heterogeneity across different responses, i.e. some features may only predict a subset of responses but not the rest. Motivated by the multi-trait fine mapping problem in genetics to identify the causal variants for multiple related traits, we developed a novel multivariate Bayesian variable selection method to select critical predictors from a large number of grouped predictors that target at multiple correlated and possibly heterogeneous responses. Our new method is featured by its selection at multiple levels, its incorporation of prior biological knowledge to guide selection and identification of best subset of responses predictors target at. We showed the advantage of our method via extensive simulations and a real fine mapping example to identify causal variants associated with different subsets of addictive behaviors.
We address the problem of testing conditional mean and conditional variance for non-stationary data. We build e-values and p-values for four types of non-parametric composite hypotheses with specified mean and variance as well as other conditions on the shape of the data-generating distribution. These shape conditions include symmetry, unimodality, and their combination. Using the obtained e-values and p-values, we construct tests via e-processes, also known as testing by betting, as well as some tests based on combining p-values for comparison. Although we mainly focus on one-sided tests, the two-sided test for the mean is also studied. Simulation and empirical studies are conducted under a few settings, and they illustrate features of the methods based on e-processes.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.