In recent years, there has been a growing interest in exploring the application of single-photon avalanche diode (SPAD) in optical wireless communication (OWC). As a photon counting detector, SPAD can provide much higher sensitivity compared to the other commonly used photodetectors. However, SPAD-based receivers suffer from significant dead-time-induced non-linear distortion and signal dependent noise. In this work, we propose a novel SPAD-based OWC system in which the non-linear distortion caused by dead time can be successfully eliminated by the pre-distortion of the signal at the transmitter. In addition, another system with joint pre-distortion and noise normalization functionality is proposed. Thanks to the additional noise normalization process, for the transformed signal at the receiver, the originally signal dependent noise becomes signal independent so that the conventional signal detection techniques designed for AWGN channels can be employed to decode the signal. Our numerical results demonstrate the superiority of the proposed SPAD-based systems compared to the existing systems in terms of BER performance and achievable data rate.
Given its status as a classic problem and its importance to both theoreticians and practitioners, edit distance provides an excellent lens through which to understand how the theoretical analysis of algorithms impacts practical implementations. From an applied perspective, the goals of theoretical analysis are to predict the empirical performance of an algorithm and to serve as a yardstick to design novel algorithms that perform well in practice. In this paper, we systematically survey the types of theoretical analysis techniques that have been applied to edit distance and evaluate the extent to which each one has achieved these two goals. These techniques include traditional worst-case analysis, worst-case analysis parametrized by edit distance or entropy or compressibility, average-case analysis, semi-random models, and advice-based models. We find that the track record is mixed. On one hand, two algorithms widely used in practice have been born out of theoretical analysis and their empirical performance is captured well by theoretical predictions. On the other hand, all the algorithms developed using theoretical analysis as a yardstick since then have not had any practical relevance. We conclude by discussing the remaining open problems and how they can be tackled.
Internet of things (IoT) connects all items to the Internet through information-sensing devices to exchange information for intelligent identification and management. Sybil attack is a famous and crippling attack in IoT. Most of the previous methods of detecting Sybil attacks in IoT mainly focus on static IoT while there are very rare methods applicable to mobile IoT. In this paper, a novel, lightweight, and distributive detection scheme based on edge computing is proposed for detecting Sybil attacks in mobile IoT. In the proposed scheme, a detection consists of two rounds. In each round, member nodes are required to send packets to edge nodes. Edge nodes calculate a possible interval of the received signal strength indication (RSSI) from the first round and check whether the RSSI from the second round is in the interval to detect Sybil attack. Extensive experimental studies are included to show that the presented approach outperforms many existing approaches in terms of true detection and false detection rates. Moreover, experimental results show that the fault tolerance design in the proposed approach greatly enhances the detection scheme.
The Internet of Things (IoT) is one of the emerging technologies that has grabbed the attention of researchers from academia and industry. The idea behind Internet of things is the interconnection of internet enabled things or devices to each other and to humans, to achieve some common goals. In near future IoT is expected to be seamlessly integrated into our environment and human will be wholly solely dependent on this technology for comfort and easy life style. Any security compromise of the system will directly affect human life. Therefore security and privacy of this technology is foremost important issue to resolve. In this paper we present a thorough study of security problems in IoT and classify possible cyberattacks on each layer of IoT architecture. We also discuss challenges to traditional security solutions such as cryptographic solutions, authentication mechanisms and key management in IoT. Device authentication and access controls is an essential area of IoT security, which is not surveyed so far. We spent our efforts to bring the state of the art device authentication and access control techniques on a single paper.
Molecular communication has a key role to play in future medical applications, including detecting, analyzing, and addressing infectious disease outbreaks. Overcoming inter-symbol interference (ISI) is one of the key challenges in the design of molecular communication systems. In this paper, we propose to optimize the detection interval to minimize the impact of ISI while ensuring the accurate detection of the transmitted information symbol, which is suitable for the absorbing and passive receivers. For tractability, based on the signal-to-interference difference (SID) and signal-to-interference-and-noise amplitude ratio (SINAR), we propose a modified-SINAR (mSINAR) to measure the bit error rate (BER) performance for the molecular communication system with a variable detection interval. Besides, we derive the optimal detection interval in closed form. Using simulation results, we show that the BER performance of our proposed mSINAR scheme is superior to the competing schemes, and achieves similar performance to optimal intervals found by the exhaustive search.
In recent years, establishing secure visual communications has turned into one of the essential problems for security engineers and researchers. However, only limited novel solutions are provided for image encryption, and limiting the visual cryptography to only limited schemes can bring up negative consequences, especially with emerging quantum computational systems. This paper presents a novel algorithm for establishing secure private visual communication. The proposed method has a layered architecture with several cohesive components, and corresponded with an NP-hard problem, despite its symmetric structure. This two-step technique is not limited to gray-scale pictures, and furthermore, utilizing a lattice structure causes to proposed method has optimal resistance for the post-quantum era, and is relatively secure from the theoretical dimension.
Multihop relaying is a potential technique to mitigate channel impairments in optical wireless communications (OWC). In this paper, multiple fixed-gain amplify-and-forward (AF) relays are employed to enhance the OWC performance under the combined effect of atmospheric turbulence, pointing errors, and fog. We consider a long-range OWC link by modeling the atmospheric turbulence by the Fisher-Snedecor ${\cal{F}}$ distribution, pointing errors by the generalized non-zero boresight model, and random path loss due to fog. We also consider a short-range OWC system by ignoring the impact of atmospheric turbulence. We derive novel upper bounds on the probability density function (PDF) and cumulative distribution function (CDF) of the end-to-end signal-to-noise ratio (SNR) for both short and long-range multihop OWC systems by developing exact statistical results for a single-hop OWC system under the combined effect of ${\cal{F}}$-turbulence channels, non-zero boresight pointing errors, and fog-induced fading. Based on these expressions, we present analytical expressions of outage probability (OP) and average bit-error-rate (ABER) performance for the considered OWC systems involving single-variate Fox's H and Meijer's G functions. Moreover, asymptotic expressions of the outage probability in high SNR region are developed using simpler Gamma functions to provide insights on the effect of channel and system parameters. The derived analytical expressions are validated through Monte-Carlo simulations, and the scaling of the OWC performance with the number of relay nodes is demonstrated with a comparison to the single-hop transmission.
Extracting non-Gaussian information from the non-linear regime of structure formation is key to fully exploiting the rich data from upcoming cosmological surveys probing the large-scale structure of the universe. However, due to theoretical and computational complexities, this remains one of the main challenges in analyzing observational data. We present a set of summary statistics for cosmological matter fields based on 3D wavelets to tackle this challenge. These statistics are computed as the spatial average of the complex modulus of the 3D wavelet transform raised to a power $q$ and are therefore known as invariant wavelet moments. The 3D wavelets are constructed to be radially band-limited and separable on a spherical polar grid and come in three types: isotropic, oriented, and harmonic. In the Fisher forecast framework, we evaluate the performance of these summary statistics on matter fields from the Quijote suite, where they are shown to reach state-of-the-art parameter constraints on the base $\Lambda$CDM parameters, as well as the sum of neutrino masses. We show that we can improve constraints by a factor 5 to 10 in all parameters with respect to the power spectrum baseline.
Although nanorobots have been used as clinical prescriptions for work such as gastroscopy, and even photoacoustic tomography technology has been proposed to control nanorobots to deliver drugs at designated delivery points in real time, and there are cases of eliminating "superbacteria" in blood through nanorobots, most technologies are immature, either with low efficiency or low accuracy, Either it can not be mass produced, so the most effective way to treat cancer diseases at this stage is through chemotherapy and radiotherapy. Patients are suffering and can not be cured. Therefore, this paper proposes an ideal model of a treatment method that can completely cure cancer, a cooperative treatment method based on nano robot queue through team member communication and computer vision image classification (target detection).
We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.