亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This research study explores the applicability of Deep Reinforcement Learning (DRL) for thermal control based on Computational Fluid Dynamics. To accomplish that, the forced convection on a hot plate prone to a pulsating cooling jet with variable velocity has been investigated. We begin with evaluating the efficiency and viability of a vanilla Deep Q-Network (DQN) method for thermal control. Subsequently, a comprehensive comparison between different variants of DRL is conducted. Soft Double and Duel DQN achieved better thermal control performance among all the variants due to their efficient learning and action prioritization capabilities. Results demonstrate that the soft Double DQN outperforms the hard Double DQN. Moreover, soft Double and Duel can maintain the temperature in the desired threshold for more than 98% of the control cycle. These findings demonstrate the promising potential of DRL in effectively addressing thermal control systems.

相關內容

Evaluating machine learning (ML) systems on their ability to learn known classifiers allows fine-grained examination of the patterns they can learn, which builds confidence when they are applied to the learning of unknown classifiers. This article presents a new benchmark for ML systems on sequence classification called MLRegTest, which contains training, development, and test sets from 1,800 regular languages. Different kinds of formal languages represent different kinds of long-distance dependencies, and correctly identifying long-distance dependencies in sequences is a known challenge for ML systems to generalize successfully. MLRegTest organizes its languages according to their logical complexity (monadic second order, first order, propositional, or monomial expressions) and the kind of logical literals (string, tier-string, subsequence, or combinations thereof). The logical complexity and choice of literal provides a systematic way to understand different kinds of long-distance dependencies in regular languages, and therefore to understand the capacities of different ML systems to learn such long-distance dependencies. Finally, the performance of different neural networks (simple RNN, LSTM, GRU, transformer) on MLRegTest is examined. The main conclusion is that their performance depends significantly on the kind of test set, the class of language, and the neural network architecture.

In [Bonito et al., J. Comput. Phys. (2022)], a local discontinous Galerkin method was proposed for approximating the large bending of prestrained plates, and in [Bonito et al., IMA J. Numer. Anal. (2023)] the numerical properties of this method were explored. These works considered deformations driven predominantly by bending. Thus, a bending energy with a metric constraint was considered. We extend these results to the case of an energy with both a bending component and a nonconvex stretching component, and we also consider folding across a crease. The proposed discretization of this energy features a continuous finite element space, as well as a discrete Hessian operator. We establish the $\Gamma$-convergence of the discrete to the continuous energy and also present an energy-decreasing gradient flow for finding critical points of the discrete energy. Finally, we provide numerical simulations illustrating the convergence of minimizers and the capabilities of the model.

The fundamental diagram serves as the foundation of traffic flow modeling for almost a century. With the increasing availability of road sensor data, deterministic parametric models have proved inadequate in describing the variability of real-world data, especially in congested area of the density-flow diagram. In this paper we estimate the stochastic density-flow relation introducing a nonparametric method called convex quantile regression. The proposed method does not depend on any prior functional form assumptions, but thanks to the concavity constraints, the estimated function satisfies the theoretical properties of the density-flow curve. The second contribution is to develop the new convex quantile regression with bags (CQRb) approach to facilitate practical implementation of CQR to the real-world data. We illustrate the CQRb estimation process using the road sensor data from Finland in years 2016-2018. Our third contribution is to demonstrate the excellent out-of-sample predictive power of the proposed CQRb method in comparison to the standard parametric deterministic approach.

The Italian Digital Media Observatory (IDMO) project, part of a European initiative, focuses on countering disinformation and fake news. This report outlines contributions from Rai-CRITS to the project, including: (i) the creation of novel datasets for testing technologies (ii) development of an automatic model for categorizing Pagella Politica verdicts to facilitate broader analysis (iii) creation of an automatic model for recognizing textual entailment with exceptional accuracy on the FEVER dataset (iv) assessment using GPT-4 to identify textual entailmen (v) a game to raise awareness about fake news at national events.

We propose a novel value approximation method, namely Eigensubspace Regularized Critic (ERC) for deep reinforcement learning (RL). ERC is motivated by an analysis of the dynamics of Q-value approximation error in the Temporal-Difference (TD) method, which follows a path defined by the 1-eigensubspace of the transition kernel associated with the Markov Decision Process (MDP). It reveals a fundamental property of TD learning that has remained unused in previous deep RL approaches. In ERC, we propose a regularizer that guides the approximation error tending towards the 1-eigensubspace, resulting in a more efficient and stable path of value approximation. Moreover, we theoretically prove the convergence of the ERC method. Besides, theoretical analysis and experiments demonstrate that ERC effectively reduces the variance of value functions. Among 26 tasks in the DMControl benchmark, ERC outperforms state-of-the-art methods for 20. Besides, it shows significant advantages in Q-value approximation and variance reduction. Our code is available at //sites.google.com/view/erc-ecml23/.

The Capacitated Vehicle Routing Problem (CVRP) is one of the most extensively studied problems in combinatorial optimization. According to the property of the demand of customers, we distinguish three variants of CVRP: unit-demand, splittable and unsplittable. We consider $k$-CVRP in general metrics and general graphs, where $k$ is the capacity of the vehicle and all the three versions are APX-hard for each fixed $k\geq 3$. In this paper, we give a $(5/2-\Theta(\sqrt{1/k}))$-approximation algorithm for splittable and unit-demand $k$-CVRP and a $(5/2+\ln2-\Theta(\sqrt{1/k}))$-approximation algorithm for unsplittable $k$-CVRP. Our approximation ratio is better than all previous results for $k$ smaller than a sufficiently large value, say $k\leq 1.7\times 10^7$. For small $k$, we also design independent elegant algorithms with further improvements. For the splittable and unit-demand cases, we improve the ratio from $1.792$ to $1.500$ for $k=3$, and from $1.750$ to $1.500$ for $k=4$ too. For the unsplittable case, we improve the ratio from $1.792$ to $1.500$ for $k=3$, from $2.051$ to $1.750$ for $k=4$, and from $2.249$ to $2.157$ for $k=5$. The approximation ratio for $k=3$ also surprisingly achieve the same ratio for the splittable case. Note that for small $k$ such as $3$, $4$ and $5$, some previous results have also been kept for decades. Our techniques, such as the EX-ITP method -- an extension of the classic ITP method, has potential to improve algorithms for more routing problems.

The integration of Artificial Intelligence (AI) into education is a recent development, with chatbots emerging as a noteworthy addition to this transformative landscape. As online learning platforms rapidly advance, students need to adapt swiftly to excel in this dynamic environment. Consequently, understanding the acceptance of chatbots, particularly those employing Large Language Model (LLM) such as Chat Generative Pretrained Transformer (ChatGPT), Google Bard, and other interactive AI technologies, is of paramount importance. However, existing research on chatbots in education has overlooked key behavior-related aspects, such as Optimism, Innovativeness, Discomfort, Insecurity, Transparency, Ethics, Interaction, Engagement, and Accuracy, creating a significant literature gap. To address this gap, this study employs Partial Least Squares Structural Equation Modeling (PLS-SEM) to investigate the determinant of chatbots adoption in education among students, considering the Technology Readiness Index (TRI) and Technology Acceptance Model (TAM). Utilizing a five-point Likert scale for data collection, we gathered a total of 185 responses, which were analyzed using R-Studio software. We established 12 hypotheses to achieve its objectives. The results showed that Optimism and Innovativeness are positively associated with Perceived Ease of Use (PEOU) and Perceived Usefulness (PU). Conversely, Discomfort and Insecurity negatively impact PEOU, with only Insecurity negatively affecting PU. These findings provide insights for future technology designers, elucidating critical user behavior factors influencing chatbots adoption and utilization in educational contexts.

Variational Autoencoders (VAEs) have proven to be effective models for producing latent representations of cognitive and semantic value. We assess the degree to which VAEs trained on a prototypical tonal music corpus of 371 Bach's chorales define latent spaces representative of the circle of fifths and the hierarchical relation of each key component pitch as drawn in music cognition. In detail, we compare the latent space of different VAE corpus encodings -- Piano roll, MIDI, ABC, Tonnetz, DFT of pitch, and pitch class distributions -- in providing a pitch space for key relations that align with cognitive distances. We evaluate the model performance of these encodings using objective metrics to capture accuracy, mean square error (MSE), KL-divergence, and computational cost. The ABC encoding performs the best in reconstructing the original data, while the Pitch DFT seems to capture more information from the latent space. Furthermore, an objective evaluation of 12 major or minor transpositions per piece is adopted to quantify the alignment of 1) intra- and inter-segment distances per key and 2) the key distances to cognitive pitch spaces. Our results show that Pitch DFT VAE latent spaces align best with cognitive spaces and provide a common-tone space where overlapping objects within a key are fuzzy clusters, which impose a well-defined order of structural significance or stability -- i.e., a tonal hierarchy. Tonal hierarchies of different keys can be used to measure key distances and the relationships of their in-key components at multiple hierarchies (e.g., notes and chords). The implementation of our VAE and the encodings framework are made available online.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

北京阿比特科技有限公司