With the widespread application of efficient pattern mining algorithms, sequential patterns that allow gap constraints have become a valuable tool to discover knowledge from biological data such as DNA and protein sequences. Among all kinds of gap-constrained mining, non-overlapping sequence mining can mine interesting patterns and satisfy the anti-monotonic property (the Apriori property). However, existing algorithms do not search for targeted sequential patterns, resulting in unnecessary and redundant pattern generation. Targeted pattern mining can not only mine patterns that are more interesting to users but also reduce the unnecessary redundant sequence generated, which can greatly avoid irrelevant computation. In this paper, we define and formalize the problem of targeted non-overlapping sequential pattern mining and propose an algorithm named TALENT (TArgeted mining of sequentiaL pattErN with consTraints). Two search methods including breadth-first and depth-first searching are designed to troubleshoot the generation of patterns. Furthermore, several pruning strategies to reduce the reading of sequences and items in the data and terminate redundant pattern extensions are presented. Finally, we select a series of datasets with different characteristics and conduct extensive experiments to compare the TALENT algorithm with the existing algorithms for mining non-overlapping sequential patterns. The experimental results demonstrate that the proposed targeted mining algorithm, TALENT, has excellent mining efficiency and can deal efficiently with many different query settings.
Predictive variability due to data ambiguities has typically been addressed via construction of dedicated models with built-in probabilistic capabilities that are trained to predict uncertainty estimates as variables of interest. These approaches require distinct architectural components and training mechanisms, may include restrictive assumptions and exhibit overconfidence, i.e., high confidence in imprecise predictions. In this work, we propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity. The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions. It is architecture agnostic and can be applied to any feed-forward deterministic network without changes to the architecture or training procedure. Experiments on regression tasks on imaging and non-imaging input data show the method's ability to generate diverse and multi-modal predictive distributions, and a desirable correlation of the estimated uncertainty with the prediction error.
A chiplet is an integrated circuit that encompasses a well-defined subset of an overall system's functionality. In contrast to traditional monolithic system-on-chips (SoCs), chiplet-based architecture can reduce costs and increase reusability, representing a promising avenue for continuing Moore's Law. Despite the advantages of multi-chiplet architectures, floorplan design in a chiplet-based architecture has received limited attention. Conflicts between cost and performance necessitate a trade-off in chiplet floorplan design since additional latency introduced by advanced packaging can decrease performance. Consequently, balancing power, performance, cost, area, and reliability is of paramount importance. To address this challenge, we propose Floorplet, a framework comprising simulation tools for performance reporting and comprehensive models for cost and reliability optimization. Our framework employs the open-source Gem5 simulator to establish the relationship between performance and floorplan for the first time, guiding the floorplan optimization of multi-chiplet architecture. The experimental results show that our framework decreases inter-chiplet communication costs by 24.81%.
Matching problems with group-fairness constraints and diversity constraints have numerous applications such as in allocation problems, committee selection, school choice, etc. Moreover, online matching problems have lots of applications in ad allocations and other e-commerce problems like product recommendation in digital marketing. We study two problems involving assigning {\em items} to {\em platforms}, where items belong to various {\em groups} depending on their attributes; the set of items are available offline and the platforms arrive online. In the first problem, we study online matchings with {\em proportional fairness constraints}. Here, each platform on arrival should either be assigned a set of items in which the fraction of items from each group is within specified bounds or be assigned no items; the goal is to assign items to platforms in order to maximize the number of items assigned to platforms. In the second problem, we study online matchings with {\em diversity constraints}, i.e. for each platform, absolute lower bounds are specified for each group. Each platform on arrival should either be assigned a set of items that satisfy these bounds or be assigned no items; the goal is to maximize the set of platforms that get matched. We study approximation algorithms and hardness results for these problems. The technical core of our proofs is a new connection between these problems and the problem of matchings in hypergraphs. Our experimental evaluation shows the performance of our algorithms on real-world and synthetic datasets exceeds our theoretical guarantees.
AI alignment refers to models acting towards human-intended goals, preferences, or ethical principles. Given that most large-scale deep learning models act as black boxes and cannot be manually controlled, analyzing the similarity between models and humans can be a proxy measure for ensuring AI safety. In this paper, we focus on the models' visual perception alignment with humans, further referred to as AI-human visual alignment. Specifically, we propose a new dataset for measuring AI-human visual alignment in terms of image classification, a fundamental task in machine perception. In order to evaluate AI-human visual alignment, a dataset should encompass samples with various scenarios that may arise in the real world and have gold human perception labels. Our dataset consists of three groups of samples, namely Must-Act (i.e., Must-Classify), Must-Abstain, and Uncertain, based on the quantity and clarity of visual information in an image and further divided into eight categories. All samples have a gold human perception label; even Uncertain (severely blurry) sample labels were obtained via crowd-sourcing. The validity of our dataset is verified by sampling theory, statistical theories related to survey design, and experts in the related fields. Using our dataset, we analyze the visual alignment and reliability of five popular visual perception models and seven abstention methods. Our code and data is available at \url{//github.com/jiyounglee-0523/VisAlign}.
Magnitude and (co)weightings are quite general constructions in enriched categories, yet they have been developed almost exclusively in the context of Lawvere metric spaces. We construct a meaningful notion of magnitude for flow graphs based on the observation that topological entropy provides a suitable map into the max-plus semiring, and we outline its utility. Subsequently, we identify a separate point of contact between magnitude and topological entropy in digraphs that yields an analogue of volume entropy for geodesic flows. Finally, we sketch the utility of this construction for feature engineering in downstream applications with generic digraphs.
Multispectral pedestrian detection achieves better visibility in challenging conditions and thus has a broad application in various tasks, for which both the accuracy and computational cost are of paramount importance. Most existing approaches treat RGB and infrared modalities equally, typically adopting two symmetrical CNN backbones for multimodal feature extraction, which ignores the substantial differences between modalities and brings great difficulty for the reduction of the computational cost as well as effective crossmodal fusion. In this work, we propose a novel and efficient framework named WCCNet that is able to differentially extract rich features of different spectra with lower computational complexity and semantically rearranges these features for effective crossmodal fusion. Specifically, the discrete wavelet transform (DWT) allowing fast inference and training speed is embedded to construct a dual-stream backbone for efficient feature extraction. The DWT layers of WCCNet extract frequency components for infrared modality, while the CNN layers extract spatial-domain features for RGB modality. This methodology not only significantly reduces the computational complexity, but also improves the extraction of infrared features to facilitate the subsequent crossmodal fusion. Based on the well extracted features, we elaborately design the crossmodal rearranging fusion module (CMRF), which can mitigate spatial misalignment and merge semantically complementary features of spatially-related local regions to amplify the crossmodal complementary information. We conduct comprehensive evaluations on KAIST and FLIR benchmarks, in which WCCNet outperforms state-of-the-art methods with considerable computational efficiency and competitive accuracy. We also perform the ablation study and analyze thoroughly the impact of different components on the performance of WCCNet.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.