亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An orientable sequence of order $n$ is a cyclic binary sequence such that each length-$n$ substring appears at most once \emph{in either direction}. Maximal length orientable sequences are known only for $n\leq 7$, and a trivial upper bound on their length is $2^{n-1} - 2^{\lfloor(n-1)/2\rfloor}$. This paper presents the first efficient algorithm to construct orientable sequences with asymptotically optimal length; more specifically, our algorithm constructs orientable sequences via cycle-joining and a successor-rule approach requiring $O(n)$ time per symbol and $O(n)$ space. This answers a longstanding open question from Dai, Martin, Robshaw, Wild [Cryptography and Coding III (1993)]. Our sequences are applied to find new longest-known orientable sequences for $n\leq 20$.

相關內容

The {\em discrepancy} of a matrix $M \in \mathbb{R}^{d \times n}$ is given by $\mathrm{DISC}(M) := \min_{\boldsymbol{x} \in \{-1,1\}^n} \|M\boldsymbol{x}\|_\infty$. An outstanding conjecture, attributed to Koml\'os, stipulates that $\mathrm{DISC}(M) = O(1)$, whenever $M$ is a Koml\'os matrix, that is, whenever every column of $M$ lies within the unit sphere. Our main result asserts that $\mathrm{DISC}(M + R/\sqrt{d}) = O(d^{-1/2})$ holds asymptotically almost surely, whenever $M \in \mathbb{R}^{d \times n}$ is Koml\'os, $R \in \mathbb{R}^{d \times n}$ is a Rademacher random matrix, $d = \omega(1)$, and $n = \omega(d \log d)$. The factor $d^{-1/2}$ normalising $R$ is essentially best possible and the dependency between $n$ and $d$ is asymptotically best possible. Our main source of inspiration is a result by Bansal, Jiang, Meka, Singla, and Sinha (ICALP 2022). They obtained an assertion similar to the one above in the case that the smoothing matrix is Gaussian. They asked whether their result can be attained with the optimal dependency $n = \omega(d \log d)$ in the case of Bernoulli random noise or any other types of discretely distributed noise; the latter types being more conducive for Smoothed Analysis in other discrepancy settings such as the Beck-Fiala problem. For Bernoulli noise, their method works if $n = \omega(d^2)$. In the case of Rademacher noise, we answer the question posed by Bansal, Jiang, Meka, Singla, and Sinha. Our proof builds upon their approach in a strong way and provides a discrete version of the latter. Breaking the $n = \omega(d^2)$ barrier and reaching the optimal dependency $n = \omega(d \log d)$ for Rademacher noise requires additional ideas expressed through a rather meticulous counting argument, incurred by the need to maintain a high level of precision all throughout the discretisation process.

A word $w=w_1\cdots w_n$ over the set of positive integers is a Motzkin word whenever $w_1=\texttt{1}$, $1\leq w_k\leq w_{k-1}+1$, and $w_{k-1}\neq w_{k}$ for $k=2, \dots, n$. It can be associated to a $n$-column Motzkin polyomino whose $i$-th column contains $w_i$ cells, and all columns are bottom-justified. We reveal bijective connections between Motzkin paths, restricted Catalan words, primitive \L{}ukasiewicz paths, and Motzkin polyominoes. Using the aforementioned bijections together with classical one-to-one correspondence with Dyck paths avoiding $UDU$s, we provide generating functions with respect to the length, area, semiperimeter, value of the last symbol, and number of interior points of Motzkin polyominoes. We give asymptotics and closed-form expressions for the total area, total semiperimeter, sum of the last symbol values, and total number of interior points over all Motzkin polyominoes of a given length. We also present and prove an engaging trinomial relation concerning the number of cells lying at different levels and first terms of the expanded $(1+x+x^2)^n$.

We consider a wireless distributed computing system based on the MapReduce framework, which consists of three phases: \textit{Map}, \textit{Shuffle}, and \textit{Reduce}. The system consists of a set of distributed nodes assigned to compute arbitrary output functions depending on a file library. The computation of the output functions is decomposed into Map and Reduce functions, and the Shuffle phase, which involves the data exchange, links the two. In our model, the Shuffle phase communication happens over a full-duplex wireless interference channel. For this setting, a coded wireless MapReduce distributed computing scheme exists in the literature, achieving optimal performance under one-shot linear schemes. However, the scheme requires the number of input files to be very large, growing exponentially with the number of nodes. We present schemes that require the number of files to be in the order of the number of nodes and achieve the same performance as the existing scheme. The schemes are obtained by designing a structure called wireless MapReduce array that succinctly represents all three phases in a single array. The wireless MapReduce arrays can also be obtained from the extended placement delivery arrays known for multi-antenna coded caching schemes.

The $k$-CombDMR problem is that of determining whether an $n \times n$ distance matrix can be realised by $n$ vertices in some undirected graph with $n + k$ vertices. This problem has a simple solution in the case $k=0$. In this paper we show that this problem is polynomial time solvable for $k=1$ and $k=2$. Moreover, we provide algorithms to construct such graph realisations by solving appropriate 2-SAT instances. In the case where $k \geq 3$, this problem is NP-complete. We show this by a reduction of the $k$-colourability problem to the $k$-CombDMR problem. Finally, we discuss the simpler polynomial time solvable problem of tree realisability for a given distance matrix.

A key challenge of quantum programming is uncomputation: the reversible deallocation of qubits. And while there has been much recent progress on automating uncomputation, state-of-the-art methods are insufficient for handling today's expressive quantum programming languages. A core reason is that they operate on primitive quantum circuits, while quantum programs express computations beyond circuits, for instance, they can capture families of circuits defined recursively in terms of uncomputation and adjoints. In this paper, we introduce the first modular automatic approach to synthesize correct and efficient uncomputation for expressive quantum programs. Our method is based on two core technical contributions: (i) an intermediate representation (IR) that can capture expressive quantum programs and comes with support for uncomputation, and (ii) modular algorithms over that IR for synthesizing uncomputation and adjoints. We have built a complete end-to-end implementation of our method, including an implementation of the IR and the synthesis algorithms, as well as a translation from an expressive fragment of the Silq programming language to our IR and circuit generation from the IR. Our experimental evaluation demonstrates that we can handle programs beyond the capabilities of existing uncomputation approaches, while being competitive on the benchmarks they can handle. More broadly, we show that it is possible to benefit from the greater expressivity and safety offered by high-level quantum languages without sacrificing efficiency.

A locally recoverable code of locality $r$ over $\mathbb{F}_{q}$ is a code where every coordinate of a codeword can be recovered using the values of at most $r$ other coordinates of that codeword. Locally recoverable codes are efficient at restoring corrupted messages and data which make them highly applicable to distributed storage systems. Quasi-cyclic codes of length $n=m\ell$ and index $\ell$ are linear codes that are invariant under cyclic shifts by $\ell$ places. %Quasi-cyclic codes are generalizations of cyclic codes and are isomorphic to $\mathbb{F}_{q} [x]/ \langle x^m-1 \rangle$-submodules of $\mathbb{F}_{q^\ell} [x] / \langle x^m-1 \rangle$. In this paper, we decompose quasi-cyclic locally recoverable codes into a sum of constituent codes where each constituent code is a linear code over a field extension of $\mathbb{F}_q$. Using these constituent codes with set parameters, we propose conditions which ensure the existence of almost optimal and optimal quasi-cyclic locally recoverable codes with increased dimension and code length.

We consider the problem of symmetrising a neural network along a group homomorphism: given a homomorphism $\varphi : H \to G$, we would like a procedure that converts $H$-equivariant neural networks into $G$-equivariant ones. We formulate this in terms of Markov categories, which allows us to consider neural networks whose outputs may be stochastic, but with measure-theoretic details abstracted away. We obtain a flexible, compositional, and generic framework for symmetrisation that relies on minimal assumptions about the structure of the group and the underlying neural network architecture. Our approach recovers existing methods for deterministic symmetrisation as special cases, and extends directly to provide a novel methodology for stochastic symmetrisation also. Beyond this, we believe our findings also demonstrate the utility of Markov categories for addressing problems in machine learning in a conceptual yet mathematically rigorous way.

A recent upper bound by Le and Solomon [STOC '23] has established that every $n$-node graph has a $(1+\varepsilon)(2k-1)$-spanner with lightness $O(\varepsilon^{-1} n^{1/k})$. This bound is optimal up to its dependence on $\varepsilon$; the remaining open problem is whether this dependence can be improved or perhaps even removed entirely. We show that the $\varepsilon$-dependence cannot in fact be completely removed. For constant $k$ and for $\varepsilon:= \Theta(n^{-\frac{1}{2k-1}})$, we show a lower bound on lightness of $$\Omega\left( \varepsilon^{-1/k} n^{1/k} \right).$$ For example, this implies that there are graphs for which any $3$-spanner has lightness $\Omega(n^{2/3})$, improving on the previous lower bound of $\Omega(n^{1/2})$. An unusual feature of our lower bound is that it is conditional on the girth conjecture with parameter $k-1$ rather than $k$. We additionally show that this implies certain technical limitations to improving our lower bound further. In particular, under the same conditional, generalizing our lower bound to all $\varepsilon$ or obtaining an optimal $\varepsilon$-dependence are as hard as proving the girth conjecture for all constant $k$.

Given a finite family $\mathcal{F}$ of graphs, we say that a graph $G$ is "$\mathcal{F}$-free" if $G$ does not contain any graph in $\mathcal{F}$ as a subgraph. A vertex-colored graph $H$ is called "rainbow" if no two vertices of $H$ have the same color. Given an integer $s$ and a finite family of graphs $\mathcal{F}$, let $\ell(s,\mathcal{F})$ denote the smallest integer such that any properly vertex-colored $\mathcal{F}$-free graph $G$ having $\chi(G)\geq\ell(s,\mathcal{F})$ contains an induced rainbow path on $s$ vertices. Scott and Seymour showed that $\ell(s,K)$ exists for every complete graph $K$. A conjecture of N. R. Aravind states that $\ell(s,C_3)=s$. The upper bound on $\ell(s,C_3)$ that can be obtained using the methods of Scott and Seymour setting $K=C_3$ are, however, super-exponential. Gy\'arf\'as and S\'ark\"ozy showed that $\ell(s,\{C_3,C_4\})=\mathcal{O}\big((2s)^{2s}\big)$. For $r\geq 2$, we show that $\ell(s,K_{2,r})\leq (r-1)(s-1)(s-2)/2+s$ and therefore, $\ell(s,C_4)\leq\frac{s^2-s+2}{2}$. This significantly improves Gy\'arf\'as and S\'ark\"ozy's bound and also covers a bigger class of graphs. We adapt our proof to achieve much stronger upper bounds for graphs of higher girth: we prove that $\ell(s,\{C_3,C_4,\ldots,C_{g-1}\})\leq s^{1+\frac{4}{g-4}}$, where $g\geq 5$. Moreover, in each case, our results imply the existence of at least $s!/2$ distinct induced rainbow paths on $s$ vertices. Along the way, we obtain some results on related problems on oriented graphs. For $r\geq 2$, let $\mathcal{B}_r$ denote the orientations of $K_{2,r}$ in which one vertex has out-degree or in-degree $r$. We show that every $\mathcal{B}_r$-free oriented graph $G$ having $\chi(G)\geq (r-1)(s-1)(s-2)+2s+1$ and every bikernel-perfect oriented graph $G$ with girth $g\geq 5$ having $\chi(G)\geq 2s^{1+\frac{4}{g-4}}$ contains every $s$ vertex oriented tree as an induced subgraph.

A toric code, introduced by Hansen to extend the Reed-Solomon code as a $k$-dimensional subspace of $\mathbb{F}_q^n$, is determined by a toric variety or its associated integral convex polytope $P \subseteq [0,q-2]^n$, where $k=|P \cap \mathbb{Z}^n|$ (the number of integer lattice points of $P$). There are two relevant parameters that determine the quality of a code: the information rate, which measures how much information is contained in a single bit of each codeword; and the relative minimum distance, which measures how many errors can be corrected relative to how many bits each codeword has. Soprunov and Soprunova defined a good infinite family of codes to be a sequence of codes of unbounded polytope dimension such that neither the corresponding information rates nor relative minimum distances go to 0 in the limit. We examine different ways of constructing families of codes by considering polytope operations such as the join and direct sum. In doing so, we give conditions under which no good family can exist and strong evidence that there is no such good family of codes.

北京阿比特科技有限公司