We present new data structures for representing symmetric normal-form games. These data structures are optimized for efficiently computing the expected utility of each unilateral pure-strategy deviation from a symmetric mixed-strategy profile. The cumulative effect of numerous incremental innovations is a dramatic speedup in the computation of symmetric mixed-strategy Nash equilibria, making it practical to represent and solve games with dozens to hundreds of players. These data structures naturally extend to role-symmetric and action-graph games with similar benefits.
This paper examines robust functional data analysis for discretely observed data, where the underlying process encompasses various distributions, such as heavy tail, skewness, or contaminations. We propose a unified robust concept of functional mean, covariance, and principal component analysis, while existing methods and definitions often differ from one another or only address fully observed functions (the ``ideal'' case). Specifically, the robust functional mean can deviate from its non-robust counterpart and is estimated using robust local linear regression. Moreover, we define a new robust functional covariance that shares useful properties with the classic version. Importantly, this covariance yields the robust version of Karhunen--Lo\`eve decomposition and corresponding principal components beneficial for dimension reduction. The theoretical results of the robust functional mean, covariance, and eigenfunction estimates, based on pooling discretely observed data (ranging from sparse to dense), are established and aligned with their non-robust counterparts. The newly-proposed perturbation bounds for estimated eigenfunctions, with indexes allowed to grow with sample size, lay the foundation for further modeling based on robust functional principal component analysis.
What can be learned about causality and experimentation from passive data? This question is salient given recent successes of passively-trained language models in interactive domains such as tool use. Passive learning is inherently limited. However, we show that purely passive learning can in fact allow an agent to learn generalizable strategies for determining and using causal structures, as long as the agent can intervene at test time. We formally illustrate that learning a strategy of first experimenting, then seeking goals, can allow generalization from passive learning in principle. We then show empirically that agents trained via imitation on expert data can indeed generalize at test time to infer and use causal links which are never present in the training data; these agents can also generalize experimentation strategies to novel variable sets never observed in training. We then show that strategies for causal intervention and exploitation can be generalized from passive data even in a more complex environment with high-dimensional observations, with the support of natural language explanations. Explanations can even allow passive learners to generalize out-of-distribution from perfectly-confounded training data. Finally, we show that language models, trained only on passive next-word prediction, can generalize causal intervention strategies from a few-shot prompt containing examples of experimentation, together with explanations and reasoning. These results highlight the surprising power of passive learning of active causal strategies, and may help to understand the behaviors and capabilities of language models.
In this paper, we focus on an under-explored issue of biased activation in prior weakly-supervised object localization methods based on Class Activation Mapping (CAM). We analyze the cause of this problem from a causal view and attribute it to the co-occurring background confounders. Following this insight, we propose a novel Counterfactual Co-occurring Learning (CCL) paradigm to synthesize the counterfactual representations via coupling constant foreground and unrealized backgrounds in order to cut off their co-occurring relationship. Specifically, we design a new network structure called Counterfactual-CAM, which embeds the counterfactual representation perturbation mechanism into the vanilla CAM-based model. This mechanism is responsible for decoupling foreground as well as background and synthesizing the counterfactual representations. By training the detection model with these synthesized representations, we compel the model to focus on the constant foreground content while minimizing the influence of distracting co-occurring background. To our best knowledge, it is the first attempt in this direction. Extensive experiments on several benchmarks demonstrate that Counterfactual-CAM successfully mitigates the biased activation problem, achieving improved object localization accuracy.
We introduce the study of designing allocation mechanisms for fairly allocating indivisible goods in settings with interdependent valuation functions. In our setting, there is a set of goods that needs to be allocated to a set of agents (without disposal). Each agent is given a private signal, and his valuation function depends on the signals of all agents. Without the use of payments, there are strong impossibility results for designing strategyproof allocation mechanisms even in settings without interdependent values. Therefore, we turn to design mechanisms that always admit equilibria that are fair with respect to their true signals, despite their potentially distorted perception. To do so, we first extend the definitions of pure Nash equilibrium and well-studied fairness notions in literature to the interdependent setting. We devise simple allocation mechanisms that always admit a fair equilibrium with respect to the true signals. We complement this result by showing that, even for very simple cases with binary additive interdependent valuation functions, no allocation mechanism that always admits an equilibrium, can guarantee that all equilibria are fair with respect to the true signals.
Graph Transformer has recently received wide attention in the research community with its outstanding performance, yet its structural expressive power has not been well analyzed. Inspired by the connections between Weisfeiler-Lehman (WL) graph isomorphism test and graph neural network (GNN), we introduce \textbf{SEG-WL test} (\textbf{S}tructural \textbf{E}ncoding enhanced \textbf{G}lobal \textbf{W}eisfeiler-\textbf{L}ehman test), a generalized graph isomorphism test algorithm as a powerful theoretical tool for exploring the structural discriminative power of graph Transformers. We theoretically prove that the SEG-WL test is an expressivity upper bound on a wide range of graph Transformers, and the representational power of SEG-WL test can be approximated by a simple Transformer network arbitrarily under certain conditions. With the SEG-WL test, we show how graph Transformers' expressive power is determined by the design of structural encodings, and present conditions that make the expressivity of graph Transformers beyond WL test and GNNs. Moreover, motivated by the popular shortest path distance encoding, we follow the theory-oriented principles and develop a provably stronger structural encoding method, Shortest Path Induced Subgraph (\textit{SPIS}) encoding. Our theoretical findings provide a novel and practical paradigm for investigating the expressive power of graph Transformers, and extensive synthetic and real-world experiments empirically verify the strengths of our proposed methods.
Conformal prediction is a widely used method to quantify the uncertainty of a classifier under the assumption of exchangeability (e.g., IID data). We generalize conformal prediction to the Hidden Markov Model (HMM) framework where the assumption of exchangeability is not valid. The key idea of the proposed method is to partition the non-exchangeable Markovian data from the HMM into exchangeable blocks by exploiting the de Finetti's Theorem for Markov Chains discovered by Diaconis and Freedman (1980). The permutations of the exchangeable blocks are viewed as randomizations of the observed Markovian data from the HMM. The proposed method provably retains all desirable theoretical guarantees offered by the classical conformal prediction framework in both exchangeable and Markovian settings. In particular, while the lack of exchangeability introduced by Markovian samples constitutes a violation of a crucial assumption for classical conformal prediction, the proposed method views it as an advantage that can be exploited to improve the performance further. Detailed numerical and empirical results that complement the theoretical conclusions are provided to illustrate the practical feasibility of the proposed method.
Overlapping instruction subsets derived from human originated code have previously been shown to dramatically shrink the inductive programming search space, often by many orders of magnitude. Here we extend the instruction subset approach to consider direct instruction-instruction applications (or instruction digrams) as an additional search heuristic for inductive programming. In this study we analyse the frequency distribution of instruction digrams in a large sample of open source code. This indicates that the instruction digram distribution is highly skewed with over 93% of possible instruction digrams not represnted in the code sample. We demonstrate that instruction digrams can be used to constrain instruction selection during search, further reducing size of the the search space, in some cases by several orders of magnitude. This significantly increases the size of programs that can be generated using search based inductive programming techniques. We discuss the results and provide some suggestions for further work.
What matters for contrastive learning? We argue that contrastive learning heavily relies on informative features, or "hard" (positive or negative) features. Early works include more informative features by applying complex data augmentations and large batch size or memory bank, and recent works design elaborate sampling approaches to explore informative features. The key challenge toward exploring such features is that the source multi-view data is generated by applying random data augmentations, making it infeasible to always add useful information in the augmented data. Consequently, the informativeness of features learned from such augmented data is limited. In response, we propose to directly augment the features in latent space, thereby learning discriminative representations without a large amount of input data. We perform a meta learning technique to build the augmentation generator that updates its network parameters by considering the performance of the encoder. However, insufficient input data may lead the encoder to learn collapsed features and therefore malfunction the augmentation generator. A new margin-injected regularization is further added in the objective function to avoid the encoder learning a degenerate mapping. To contrast all features in one gradient back-propagation step, we adopt the proposed optimization-driven unified contrastive loss instead of the conventional contrastive loss. Empirically, our method achieves state-of-the-art results on several benchmark datasets.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.