Large ML models and datasets have necessitated the use of multi-GPU systems for distributed model training. To harness the power offered by multi-GPU systems, it is critical to eliminate bottlenecks in inter-GPU communication - a problem made challenging by the heterogeneous nature of interconnects. In this work, we present TACCL, a synthesizer for collective communication primitives for large-scale multi-GPU systems. TACCL encodes a profiled topology and input size into a synthesis problem to generate optimized communication algorithms. TACCL is built on top of the standard NVIDIA Collective Communication Library (NCCL), allowing it to be a drop-in replacement for GPU communication in frameworks like PyTorch with minimal changes. TACCL generates algorithms for communication primitives like Allgather, Alltoall, and Allreduce that are up to $3\times$ faster than NCCL. Using TACCL's algorithms speeds up the end-to-end training of an internal mixture of experts model by $17\%$. By decomposing the optimization problem into parts and leveraging the symmetry in multi-GPU topologies, TACCL synthesizes collectives for up to 80-GPUs in less than 3 minutes, at least two orders of magnitude faster than other synthesis-based state-of-the-art collective communication libraries.
The rapid development of Machine Learning (ML) has demonstrated superior performance in many areas, such as computer vision, video and speech recognition. It has now been increasingly leveraged in software systems to automate the core tasks. However, how to securely develop the machine learning-based modern software systems (MLBSS) remains a big challenge, for which the insufficient consideration will largely limit its application in safety-critical domains. One concern is that the present MLBSS development tends to be rush, and the latent vulnerabilities and privacy issues exposed to external users and attackers will be largely neglected and hard to be identified. Additionally, machine learning-based software systems exhibit different liabilities towards novel vulnerabilities at different development stages from requirement analysis to system maintenance, due to its inherent limitations from the model and data and the external adversary capabilities. In this work, we consider that security for machine learning-based software systems may arise by inherent system defects or external adversarial attacks, and the secure development practices should be taken throughout the whole lifecycle. While machine learning has become a new threat domain for existing software engineering practices, there is no such review work covering the topic. Overall, we present a holistic review regarding the security for MLBSS, which covers a systematic understanding from a structure review of three distinct aspects in terms of security threats. Moreover, it provides a thorough state-of-the-practice for MLBSS secure development. Finally, we summarise the literature for system security assurance, and motivate the future research directions with open challenges. We anticipate this work provides sufficient discussion and novel insights to incorporate system security engineering for future exploration.
The exponential growth of internet connected systems has generated numerous challenges, such as spectrum shortage issues, which require efficient spectrum sharing (SS) solutions. Complicated and dynamic SS systems can be exposed to different potential security and privacy issues, requiring protection mechanisms to be adaptive, reliable, and scalable. Machine learning (ML) based methods have frequently been proposed to address those issues. In this article, we provide a comprehensive survey of the recent development of ML based SS methods, the most critical security issues, and corresponding defense mechanisms. In particular, we elaborate the state-of-the-art methodologies for improving the performance of SS communication systems for various vital aspects, including ML based cognitive radio networks (CRNs), ML based database assisted SS networks, ML based LTE-U networks, ML based ambient backscatter networks, and other ML based SS solutions. We also present security issues from the physical layer and corresponding defending strategies based on ML algorithms, including Primary User Emulation (PUE) attacks, Spectrum Sensing Data Falsification (SSDF) attacks, jamming attacks, eavesdropping attacks, and privacy issues. Finally, extensive discussions on open challenges for ML based SS are also given. This comprehensive review is intended to provide the foundation for and facilitate future studies on exploring the potential of emerging ML for coping with increasingly complex SS and their security problems.
Federated learning (FL) is experiencing a fast booming with the wave of distributed machine learning. In the FL paradigm, the global model is aggregated on the centralized aggregation server according to the parameters of local models instead of local training data, mitigating privacy leakage caused by the collection of sensitive information. With the increased computing and communication capabilities of edge and IoT devices, applying FL on heterogeneous devices to train machine learning models becomes a trend. The synchronous aggregation strategy in the classic FL paradigm cannot effectively use the limited resource, especially on heterogeneous devices, due to its waiting for straggler devices before aggregation in each training round. Furthermore, the disparity of data spread on devices (i.e. data heterogeneity) in real-world scenarios downgrades the accuracy of models. As a result, many asynchronous FL (AFL) paradigms are presented in various application scenarios to improve efficiency, performance, privacy, and security. This survey comprehensively analyzes and summarizes existing variants of AFL according to a novel classification mechanism, including device heterogeneity, data heterogeneity, privacy and security on heterogeneous devices, and applications on heterogeneous devices. Finally, this survey reveals rising challenges and presents potentially promising research directions in this under-investigated field.
Heterogeneous computers integrate general-purpose host processors with domain-specific accelerators to combine versatility with efficiency and high performance. To realize the full potential of heterogeneous computers, however, many hardware and software design challenges have to be overcome. While architectural and system simulators can be used to analyze heterogeneous computers, they are faced with unavoidable compromises between simulation speed and performance modeling accuracy. In this work we present HEROv2, an FPGA-based research platform that enables accurate and fast exploration of heterogeneous computers consisting of accelerators based on clusters of 32-bit RISC-V cores and an application-class 64-bit ARMv8 or RV64 host processor. HEROv2 allows to seamlessly share data between 64-bit hosts and 32-bit accelerators and comes with a fully open-source on-chip network, a unified heterogeneous programming interface, and a mixed-data-model, mixed-ISA heterogeneous compiler based on LLVM. We evaluate HEROv2 in four case studies from the application level over toolchain and system architecture down to accelerator microarchitecture. We demonstrate how HEROv2 enables effective research and development on the full stack of heterogeneous computing. For instance, the compiler can tile loops and infer data transfers to and from the accelerators, which leads to a speedup of up to 4.4x compared to the original program and in most cases is only 15 % slower than a handwritten implementation, which requires 2.6x more code.
Deep Learning (DL) models have achieved superior performance in many application domains, including vision, language, medical, commercial ads, entertainment, etc. With the fast development, both DL applications and the underlying serving hardware have demonstrated strong scaling trends, i.e., Model Scaling and Compute Scaling, for example, the recent pre-trained model with hundreds of billions of parameters with ~TB level memory consumption, as well as the newest GPU accelerators providing hundreds of TFLOPS. With both scaling trends, new problems and challenges emerge in DL inference serving systems, which gradually trends towards Large-scale Deep learning Serving systems (LDS). This survey aims to summarize and categorize the emerging challenges and optimization opportunities for large-scale deep learning serving systems. By providing a novel taxonomy, summarizing the computing paradigms, and elaborating the recent technique advances, we hope that this survey could shed light on new optimization perspectives and motivate novel works in large-scale deep learning system optimization.
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks. In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge and may severely deteriorate the generalization performance. In this paper, we investigate and identify the limitation of several decentralized optimization algorithms for different degrees of data heterogeneity. We propose a novel momentum-based method to mitigate this decentralized training difficulty. We show in extensive empirical experiments on various CV/NLP datasets (CIFAR-10, ImageNet, and AG News) and several network topologies (Ring and Social Network) that our method is much more robust to the heterogeneity of clients' data than other existing methods, by a significant improvement in test performance ($1\% \!-\! 20\%$). Our code is publicly available.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.
Due to the significance and value in human-computer interaction and natural language processing, task-oriented dialog systems are attracting more and more attention in both academic and industrial communities. In this paper, we survey recent advances and challenges in an issue-specific manner. We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog system modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance, and (3) integrating domain ontology knowledge into the dialog model in both pipeline and end-to-end models. We also review the recent progresses in dialog evaluation and some widely-used corpora. We believe that this survey can shed a light on future research in task-oriented dialog systems.
Graph representation learning is to learn universal node representations that preserve both node attributes and structural information. The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering. When a graph is heterogeneous, the problem becomes more challenging than the homogeneous graph node learning problem. Inspired by the emerging information theoretic-based learning algorithm, in this paper we propose an unsupervised graph neural network Heterogeneous Deep Graph Infomax (HDGI) for heterogeneous graph representation learning. We use the meta-path structure to analyze the connections involving semantics in heterogeneous graphs and utilize graph convolution module and semantic-level attention mechanism to capture local representations. By maximizing local-global mutual information, HDGI effectively learns high-level node representations that can be utilized in downstream graph-related tasks. Experiment results show that HDGI remarkably outperforms state-of-the-art unsupervised graph representation learning methods on both classification and clustering tasks. By feeding the learned representations into a parametric model, such as logistic regression, we even achieve comparable performance in node classification tasks when comparing with state-of-the-art supervised end-to-end GNN models.
We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, natural language processing, including dialogue systems, machine translation, and text generation, computer vision, neural architecture design, business management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and computer systems. We mention topics not reviewed yet, and list a collection of RL resources. After presenting a brief summary, we close with discussions. Please see Deep Reinforcement Learning, arXiv:1810.06339, for a significant update.