We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems for which the observational model is based on partial differential equations and, consequently, is computationally expensive to evaluate. A-optimality is a widely used and easy-to-interpret criterion for the Bayesian design of experiments. The criterion seeks the optimal experiment design by minimizing the expected conditional variance, also known as the expected posterior variance. This work presents a novel likelihood-free method for seeking the A-optimal design of experiments without sampling or integrating the Bayesian posterior distribution. In our approach, the expected conditional variance is obtained via the variance of the conditional expectation using the law of total variance, while we take advantage of the orthogonal projection property to approximate the conditional expectation. Through an asymptotic error estimation, we show that the intractability of the posterior does not affect the performance of our approach. We use an artificial neural network (ANN) to approximate the nonlinear conditional expectation to implement our method. For dealing with continuous experimental design parameters, we integrate the training process of the ANN into minimizing the expected conditional variance. Specifically, we propose a non-local approximation of the conditional expectation and apply transfer learning to reduce the number of evaluations of the observation model. Through numerical experiments, we demonstrate that our method significantly reduces the number of observational model evaluations compared with common importance sampling-based approaches. This reduction is crucial, considering the computationally expensive nature of these models.
The choice to participate in a data-driven service, often made on the basis of quality of that service, influences the ability of the service to learn and improve. We study the participation and retraining dynamics that arise when both the learners and sub-populations of users are \emph{risk-reducing}, which cover a broad class of updates including gradient descent, multiplicative weights, etc. Suppose, for example, that individuals choose to spend their time amongst social media platforms proportionally to how well each platform works for them. Each platform also gathers data about its active users, which it uses to update parameters with a gradient step. For this example and for our general class of dynamics, we show that the only asymptotically stable equilibria are segmented, with sub-populations allocated to a single learner. Under mild assumptions, the utilitarian social optimum is a stable equilibrium. In contrast to previous work, which shows that repeated risk minimization can result in representation disparity and high overall loss for a single learner \citep{hashimoto2018fairness,miller2021outside}, we find that repeated myopic updates with multiple learners lead to better outcomes. We illustrate the phenomena via a simulated example initialized from real data.
In a connection of many IoT devices that each collect data, normally training a machine learning model would involve transmitting the data to a central server which requires strict privacy rules. However, some owners are reluctant of availing their data out of the company due to data security concerns. Federated learning(FL) as a distributed machine learning approach performs training of a machine learning model on the device that gathered the data itself. In this scenario, data is not share over the network for training purpose. Fedavg as one of FL algorithms permits a model to be copied to participating devices during a training session. The devices could be chosen at random, and a device can be aborted. The resulting models are sent to the coordinating server and then average models from the devices that finished training. The process is repeated until a desired model accuracy is achieved. By doing this, FL approach solves the privacy problem for IoT/ IIoT devices that held sensitive data for the owners. In this paper, we leverage the benefits of FL and implemented Fedavg algorithm on a recent dataset that represent the modern IoT/ IIoT device networks. The results were almost the same as the centralized machine learning approach. We also evaluated some shortcomings of Fedavg such as unfairness that happens during the training when struggling devices do not participate for every stage of training. This inefficient training of local or global model could lead in a high number of false alarms in intrusion detection systems for IoT/IIoT gadgets developed using Fedavg. Hence, after evaluating the FedAv deep auto encoder with centralized deep auto encoder ML, we further proposed and designed a Fair Fedavg algorithm that will be evaluated in the future work.
In the past decades, automated high-content microscopy demonstrated its ability to deliver large quantities of image-based data powering the versatility of phenotypic drug screening and systems biology applications. However, as the sizes of image-based datasets grew, it became infeasible for humans to control, avoid and overcome the presence of imaging and sample preparation artefacts in the images. While novel techniques like machine learning and deep learning may address these shortcomings through generative image inpainting, when applied to sensitive research data this may come at the cost of undesired image manipulation. Undesired manipulation may be caused by phenomena such as neural hallucinations, to which some artificial neural networks are prone. To address this, here we evaluate the state-of-the-art inpainting methods for image restoration in a high-content fluorescence microscopy dataset of cultured cells with labelled nuclei. We show that architectures like DeepFill V2 and Edge Connect can faithfully restore microscopy images upon fine-tuning with relatively little data. Our results demonstrate that the area of the region to be restored is of higher importance than shape. Furthermore, to control for the quality of restoration, we propose a novel phenotype-preserving metric design strategy. In this strategy, the size and count of the restored biological phenotypes like cell nuclei are quantified to penalise undesirable manipulation. We argue that the design principles of our approach may also generalise to other applications.
Stochastic multi-scale modeling and simulation for nonlinear thermo-mechanical problems of composite materials with complicated random microstructures remains a challenging issue. In this paper, we develop a novel statistical higher-order multi-scale (SHOMS) method for nonlinear thermo-mechanical simulation of random composite materials, which is designed to overcome limitations of prohibitive computation involving the macro-scale and micro-scale. By virtue of statistical multi-scale asymptotic analysis and Taylor series method, the SHOMS computational model is rigorously derived for accurately analyzing nonlinear thermo-mechanical responses of random composite materials both in the macro-scale and micro-scale. Moreover, the local error analysis of SHOMS solutions in the point-wise sense clearly illustrates the crucial indispensability of establishing the higher-order asymptotic corrected terms in SHOMS computational model for keeping the conservation of local energy and momentum. Then, the corresponding space-time multi-scale numerical algorithm with off-line and on-line stages is designed to efficiently simulate nonlinear thermo-mechanical behaviors of random composite materials. Finally, extensive numerical experiments are presented to gauge the efficiency and accuracy of the proposed SHOMS approach.
We consider the identification of spatially distributed parameters under $H^1$ regularization. Solving the associated minimization problem by Gauss-Newton iteration results in linearized problems to be solved in each step that can be cast as boundary value problems involving a low-rank modification of the Laplacian. Using algebraic multigrid as a fast Laplace solver, the Sherman-Morrison-Woodbury formula can be employed to construct a preconditioner for these linear problems which exhibits excellent scaling w.r.t. the relevant problem parameters. We first develop this approach in the functional setting, thus obtaining a consistent methodology for selecting boundary conditions that arise from the $H^1$ regularization. We then construct a method for solving the discrete linear systems based on combining any fast Poisson solver with the Woodbury formula. The efficacy of this method is then demonstrated with scaling experiments. These are carried out for a common nonlinear parameter identification problem arising in electrical resistivity tomography.
This paper examines the effectiveness of several forecasting methods for predicting inflation, focusing on aggregating disaggregated forecasts - also known in the literature as the bottom-up approach. Taking the Brazilian case as an application, we consider different disaggregation levels for inflation and employ a range of traditional time series techniques as well as linear and nonlinear machine learning (ML) models to deal with a larger number of predictors. For many forecast horizons, the aggregation of disaggregated forecasts performs just as well survey-based expectations and models that generate forecasts using the aggregate directly. Overall, ML methods outperform traditional time series models in predictive accuracy, with outstanding performance in forecasting disaggregates. Our results reinforce the benefits of using models in a data-rich environment for inflation forecasting, including aggregating disaggregated forecasts from ML techniques, mainly during volatile periods. Starting from the COVID-19 pandemic, the random forest model based on both aggregate and disaggregated inflation achieves remarkable predictive performance at intermediate and longer horizons.
We combine Kronecker products, and quantitative information flow, to give a novel formal analysis for the fine-grained verification of utility in complex privacy pipelines. The combination explains a surprising anomaly in the behaviour of utility of privacy-preserving pipelines -- that sometimes a reduction in privacy results also in a decrease in utility. We use the standard measure of utility for Bayesian analysis, introduced by Ghosh at al., to produce tractable and rigorous proofs of the fine-grained statistical behaviour leading to the anomaly. More generally, we offer the prospect of formal-analysis tools for utility that complement extant formal analyses of privacy. We demonstrate our results on a number of common privacy-preserving designs.
MinRank is an NP-complete problem in linear algebra whose characteristics make it attractive to build post-quantum cryptographic primitives. Several MinRank-based digital signature schemes have been proposed. In particular, two of them, MIRA and MiRitH, have been submitted to the NIST Post-Quantum Cryptography Standardization Process. In this paper, we propose a key-generation algorithm for MinRank-based schemes that reduces the size of the public key to about 50% of the size of the public key generated by the previous best (in terms of public-key size) algorithm. Precisely, the size of the public key generated by our algorithm sits in the range of 328-676 bits for security levels of 128-256 bits. We also prove that our algorithm is as secure as the previous ones.
Single-parameter summaries of variable effects are desirable for ease of interpretation, but linear models, which would deliver these, may fit poorly to the data. A modern approach is to estimate the average partial effect -- the average slope of the regression function with respect to the predictor of interest -- using a doubly robust semiparametric procedure. Most existing work has focused on specific forms of nuisance function estimators. We extend the scope to arbitrary plug-in nuisance function estimation, allowing for the use of modern machine learning methods which in particular may deliver non-differentiable regression function estimates. Our procedure involves resmoothing a user-chosen first-stage regression estimator to produce a differentiable version, and modelling the conditional distribution of the predictors through a location-scale model. We show that our proposals lead to a semiparametric efficient estimator under relatively weak assumptions. Our theory makes use of a new result on the sub-Gaussianity of Lipschitz score functions that may be of independent interest. We demonstrate the attractive numerical performance of our approach in a variety of settings including ones with misspecification.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.