亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Complexity theory typically focuses on the difficulty of solving computational problems using classical inputs and outputs, even with a quantum computer. In the quantum world, it is natural to apply a different notion of complexity, namely the complexity of synthesizing quantum states. We investigate a state-synthesizing counterpart of the class NP, referred to as stateQMA, which is concerned with preparing certain quantum states through a polynomial-time quantum verifier with the aid of a single quantum message from an all-powerful but untrusted prover. This is a subclass of the class stateQIP recently introduced by Rosenthal and Yuen (ITCS 2022), which permits polynomially many interactions between the prover and the verifier. Our main result consists of error reduction of this class and its variants with an exponentially small gap or a bounded space, as well as how this class relates to other fundamental state synthesizing classes, i.e., states generated by uniform polynomial-time quantum circuits (stateBQP) and space-uniform polynomial-space quantum circuits (statePSPACE). Additionally, we demonstrate that stateQCMA is closed under perfect completeness. Our proof techniques are based on the quantum singular value transformation introduced by Gily\'en, Su, Low, and Wiebe (STOC 2019), and its adaption to achieve exponential precision with a bounded space.

相關內容

Quantum algorithms for factorization, search, and simulation obtain computational advantage by performing control flow such as branching and iteration based on the value of quantum data in superposition. Complicating realization of these algorithms is the fact that in predominant quantum machine models, all control flow as embodied by the program counter is classical, and cannot exist in superposition. In this work, we identify that an alternative model to enable a program counter in superposition faces an obstacle -- no such machine can correctly support control flow constructs with non-injective semantics, including the conventional conditional jump. In fact, prior attempts to support this instruction cause programs to inappropriately collapse the superposition of data, meaning that quantum advantage is lost. We prove that in general, control flow abstractions with non-injective transition semantics, such as the conventional conditional jump or the $\lambda$-calculus, cannot operate over quantum data while preserving its superposition and the computational advantage of the quantum algorithm. This theorem explains why quantum programming languages to date have been unable to directly leverage the classical concept of programs as data to support the rich control flow abstractions known in classical programming. As an alternative, we present a new quantum machine model featuring variants of conditional jump with inherently injective semantics, which sidesteps our impossibility theorem and correctly enables both quantum effects on data and data-dependent control flow. We identify the necessary condition for programs for such a machine to preserve superposition of data, and show that expressible programs coincide with the unitary quantum circuits, with examples for phase estimation, quantum walk, and physical simulation.

The introduction of the European Union's (EU) set of comprehensive regulations relating to technology, the General Data Protection Regulation, grants EU citizens the right to explanations for automated decisions that have significant effects on their life. This poses a substantial challenge, as many of today's state-of-the-art algorithms are generally unexplainable black boxes. Simultaneously, we have seen an emergence of the fields of quantum computation and quantum AI. Due to the fickle nature of quantum information, the problem of explainability is amplified, as measuring a quantum system destroys the information. As a result, there is a need for post-hoc explanations for quantum AI algorithms. In the classical context, the cooperative game theory concept of the Shapley value has been adapted for post-hoc explanations. However, this approach does not translate to use in quantum computing trivially and can be exponentially difficult to implement if not handled with care. We propose a novel algorithm which reduces the problem of accurately estimating the Shapley values of a quantum algorithm into a far simpler problem of estimating the true average of a binomial distribution in polynomial time.

Molecular mechanics (MM) force fields -- the models that characterize the energy landscape of molecular systems via simple pairwise and polynomial terms -- have traditionally relied on human expert-curated, inflexible, and poorly extensible discrete chemical parameter assignment rules, namely atom or valence types. Recently, there has been significant interest in using graph neural networks to replace this process, while enabling the parametrization scheme to be learned in an end-to-end differentiable manner directly from quantum chemical calculations or condensed-phase data. In this paper, we extend the Espaloma end-to-end differentiable force field construction approach by incorporating both energy and force fitting directly to quantum chemical data into the training process. Building on the OpenMM SPICE dataset, we curate a dataset containing chemical spaces highly relevant to the broad interest of biomolecular modeling, covering small molecules, proteins, and RNA. The resulting force field, espaloma 0.3.0, self-consistently parametrizes these diverse biomolecular species, accurately predicts quantum chemical energies and forces, and maintains stable quantum chemical energy-minimized geometries. Surprisingly, this simple approach produces highly accurate protein-ligand binding free energies when self-consistently parametrizing protein and ligand. This approach -- capable of fitting new force fields to large quantum chemical datasets in one GPU-day -- shows significant promise as a path forward for building systematically more accurate force fields that can be easily extended to new chemical domains of interest.

Density-functional theory (DFT) has revolutionized computer simulations in chemistry and material science. A faithful implementation of the theory requires self-consistent calculations. However, this effort involves repeatedly diagonalizing the Hamiltonian, for which a classical algorithm typically requires a computational complexity that scales cubically with respect to the number of electrons. This limits DFT's applicability to large-scale problems with complex chemical environments and microstructures. This article presents a quantum algorithm that has a linear scaling with respect to the number of atoms, which is much smaller than the number of electrons. Our algorithm leverages the quantum singular value transformation (QSVT) to generate a quantum circuit to encode the density-matrix, and an estimation method for computing the output electron density. In addition, we present a randomized block coordinate fixed-point method to accelerate the self-consistent field calculations by reducing the number of components of the electron density that needs to be estimated. The proposed framework is accompanied by a rigorous error analysis that quantifies the function approximation error, the statistical fluctuation, and the iteration complexity. In particular, the analysis of our self-consistent iterations takes into account the measurement noise from the quantum circuit. These advancements offer a promising avenue for tackling large-scale DFT problems, enabling simulations of complex systems that were previously computationally infeasible.

We present a new procedure to infer size bounds for integer programs automatically. Size bounds are important for the deduction of bounds on the runtime complexity or in general, for the resource analysis of programs. We show that our technique is complete (i.e., it always computes finite size bounds) for a subclass of loops, possibly with non-linear arithmetic. Moreover, we present a novel approach to combine and integrate this complete technique into an incomplete approach to infer size and runtime bounds of general integer programs. We prove completeness of our integration for an important subclass of integer programs. We implemented our new algorithm in the automated complexity analysis tool KoAT to evaluate its power, in particular on programs with non-linear arithmetic.

We propose fast and practical quantum-inspired classical algorithms for solving linear systems. Specifically, given sampling and query access to a matrix $A\in\mathbb{R}^{m\times n}$ and a vector $b\in\mathbb{R}^m$, we propose classical algorithms that produce a data structure for the solution $x\in\mathbb{R}^{n}$ of the linear system $Ax=b$ with the ability to sample and query its entries. The resulting $x$ satisfies $\|x-A^{+}b\|\leq\epsilon\|A^{+}b\|$, where $\|\cdot\|$ is the spectral norm and $A^+$ is the Moore-Penrose inverse of $A$. Our algorithm has time complexity $\widetilde{O}(\kappa_F^4/\kappa\epsilon^2)$ in the general case, where $\kappa_{F} =\|A\|_F\|A^+\|$ and $\kappa=\|A\|\|A^+\|$ are condition numbers. Compared to the prior state-of-the-art result [Shao and Montanaro, arXiv:2103.10309v2], our algorithm achieves a polynomial speedup in condition numbers. When $A$ is $s$-sparse, our algorithm has complexity $\widetilde{O}(s \kappa\log(1/\epsilon))$, matching the quantum lower bound for solving linear systems in $\kappa$ and $1/\epsilon$ up to poly-logarithmic factors [Harrow and Kothari]. When $A$ is $s$-sparse and symmetric positive-definite, our algorithm has complexity $\widetilde{O}(s\sqrt{\kappa}\log(1/\epsilon))$. Technically, our main contribution is the application of the heavy ball momentum method to quantum-inspired classical algorithms for solving linear systems, where we propose two new methods with speedups: quantum-inspired Kaczmarz method with momentum and quantum-inspired coordinate descent method with momentum. Their analysis exploits careful decomposition of the momentum transition matrix and the application of novel spectral norm concentration bounds for independent random matrices. Finally, we also conduct numerical experiments for our algorithms on both synthetic and real-world datasets, and the experimental results support our theoretical claims.

Recently Chen and Poor initiated the study of learning mixtures of linear dynamical systems. While linear dynamical systems already have wide-ranging applications in modeling time-series data, using mixture models can lead to a better fit or even a richer understanding of underlying subpopulations represented in the data. In this work we give a new approach to learning mixtures of linear dynamical systems that is based on tensor decompositions. As a result, our algorithm succeeds without strong separation conditions on the components, and can be used to compete with the Bayes optimal clustering of the trajectories. Moreover our algorithm works in the challenging partially-observed setting. Our starting point is the simple but powerful observation that the classic Ho-Kalman algorithm is a close relative of modern tensor decomposition methods for learning latent variable models. This gives us a playbook for how to extend it to work with more complicated generative models.

Quantum Internetworking is a recent field that promises numerous interesting applications, many of which require the distribution of entanglement between arbitrary pairs of users. This work deals with the problem of scheduling in an arbitrary entanglement swapping quantum network - often called first generation quantum network - in its general topology, multicommodity, loss-aware formulation. We introduce a linear algebraic framework that exploits quantum memory through the creation of intermediate entangled links. The framework is then employed to mathematically derive a natural class of quadratic scheduling policies for quantum networks by applying Lyapunov Drift Minimization, a standard technique in classical network science. Moreover, an additional class of Max-Weight inspired policies is proposed and benchmarked, reducing significantly the computation cost, at the price of a slight performance degradation. The policies are compared in terms of information availability, localization and overall network performance through an ad-hoc simulator that admits user-provided network topologies and scheduling policies in order to showcase the potential application of the provided tools to quantum network design.

The accurate modeling and control of nonlinear dynamical effects are crucial for numerous robotic systems. The Koopman formalism emerges as a valuable tool for linear control design in nonlinear systems within unknown environments. However, it still remains a challenging task to learn the Koopman operator with control from data, and in particular, the simultaneous identification of the Koopman linear dynamics and the mapping between the state and Koopman spaces. Conventional approaches, based on single-level unconstrained optimization, may lack model robustness, training efficiency, and long-term predictive accuracy. This paper presents a bi-level optimization framework that jointly learns the Koopman embedding mapping and Koopman dynamics with explicit multi-step dynamical constraints, eliminating the need for heuristically-tuned loss terms. Leveraging implicit differentiation, our formulation allows back-propagation in standard learning framework and the use of state-of-the-art optimizers, yielding more stable and robust system performance over various applications compared to conventional methods.

We analyze the convergence properties of Fermat distances, a family of density-driven metrics defined on Riemannian manifolds with an associated probability measure. Fermat distances may be defined either on discrete samples from the underlying measure, in which case they are random, or in the continuum setting, in which they are induced by geodesics under a density-distorted Riemannian metric. We prove that discrete, sample-based Fermat distances converge to their continuum analogues in small neighborhoods with a precise rate that depends on the intrinsic dimensionality of the data and the parameter governing the extent of density weighting in Fermat distances. This is done by leveraging novel geometric and statistical arguments in percolation theory that allow for non-uniform densities and curved domains. Our results are then used to prove that discrete graph Laplacians based on discrete, sample-driven Fermat distances converge to corresponding continuum operators. In particular, we show the discrete eigenvalues and eigenvectors converge to their continuum analogues at a dimension-dependent rate, which allows us to interpret the efficacy of discrete spectral clustering using Fermat distances in terms of the resulting continuum limit. The perspective afforded by our discrete-to-continuum Fermat distance analysis leads to new clustering algorithms for data and related insights into efficient computations associated to density-driven spectral clustering. Our theoretical analysis is supported with numerical simulations and experiments on synthetic and real image data.

北京阿比特科技有限公司