With the increasing number of wireless communication systems and the demand for bandwidth, the wireless medium has become a congested and contested environment. Operating under such an environment brings several challenges, especially for military communication systems, which need to guarantee reliable communication while avoiding interfering with other friendly or neutral systems and denying the enemy systems of service. In this work, we investigate a novel application of Rate-Splitting Multiple Access(RSMA) for joint communications and jamming with a Multi-Carrier(MC) waveform in a multiantenna Cognitive Radio(CR) system. RSMA is a robust multiple access scheme for downlink multi-antenna wireless networks. RSMA relies on multi-antenna Rate-Splitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at the receivers. Our aim is to simultaneously communicate with Secondary Users(SUs) and jam Adversarial Users(AUs) to disrupt their communications while limiting the interference to Primary Users(PUs) in a setting where all users perform broadband communications by MC waveforms in their respective networks. We consider the practical setting of imperfect CSI at transmitter(CSIT) for the SUs and PUs, and statistical CSIT for AUs. We formulate a problem to obtain optimal precoders which maximize the mutual information under interference and jamming power constraints. We propose an Alternating Optimization-Alternating Direction Method of Multipliers(AOADMM) based algorithm for solving the resulting non-convex problem. We perform an analysis based on Karush-Kuhn-Tucker conditions to determine the optimal jamming and interference power thresholds that guarantee the feasibility of problem and propose a practical algorithm to calculate the interference power threshold. By simulations, we show that RSMA achieves a higher sum-rate than Space Division Multiple Access(SDMA).
In this paper, we consider a resilient consensus problem for the multi-agent network where some of the agents are subject to Byzantine attacks and may transmit erroneous state values to their neighbors. In particular, we develop an event-triggered update rule to tackle this problem as well as reduce the communication for each agent. Our approach is based on the mean subsequence reduced (MSR) algorithm with agents being capable to communicate with multi-hop neighbors. Since delays are critical in such an environment, we provide necessary graph conditions for the proposed algorithm to perform well with delays in the communication. We highlight that through multi-hop communication, the network connectivity can be reduced especially in comparison with the common onehop communication case. Lastly, we show the effectiveness of the proposed algorithm by a numerical example.
Integrated sensing and communication (ISAC) creates a platform to exploit the synergy between two powerful functionalities that have been developing separately. However, the interference management and resource allocation between sensing and communication have not been fully studied. In this paper, we consider the design of perceptive mobile networks (PMNs) by adding sensing capability to current cellular networks. To avoid the full-duplex operation, we propose the PMN with distributed target monitoring terminals (TMTs) where passive TMTs are deployed over wireless networks to locate the sensing target (ST). We jointly optimize the transmit and receive beamformers towards the communication user terminals (UEs) and the ST by alternating-optimization (AO) and prove its convergence. To reduce computation complexity and obtain physical insights, we further investigate the use of linear transceivers, including zero forcing and beam synthesis (B-syn). Our analysis revealed interesting physical insights regarding interference management and resource allocation between sensing and communication: 1) instead of forming dedicated sensing signals, it is more efficient to redesign the communication signals for both communication and sensing purposes and "leak" communication energy for sensing; 2) the amount of energy leakage from one UE to the ST depends on their relative locations.
Approximately 50% of development resources are devoted to UI development tasks [9]. Occupying a large proportion of development resources, developing icons can be a time-consuming task, because developers need to consider not only effective implementation methods but also easy-to-understand descriptions. In this paper, we present Auto-Icon+, an approach for automatically generating readable and efficient code for icons from design artifacts. According to our interviews to understand the gap between designers (icons are assembled from multiple components) and developers (icons as single images), we apply a heuristic clustering algorithm to compose the components into an icon image. We then propose an approach based on a deep learning model and computer vision methods to convert the composed icon image to fonts with descriptive labels, thereby reducing the laborious manual effort for developers and facilitating UI development. We quantitatively evaluate the quality of our method in the real world UI development environment and demonstrate that our method offers developers accurate, efficient, readable, and usable code for icon designs, in terms of saving 65.2% implementing time.
This paper studies the application of reconfigurable intelligent surface (RIS) to cooperative non-orthogonal multiple access (C-NOMA) networks with simultaneous wireless information and power transfer (SWIPT). We aim for maximizing the rate of the strong user with guaranteed weak user's quality of service (QoS) by jointly optimizing power splitting factors, beamforming coefficients, and RIS reflection coefficients in two transmission phases. The formulated problem is difficult to solve due to its complex and non-convex constraints. To tackle this challenging problem, we first use alternating optimization (AO) framework to transform it into three subproblems, and then use the penalty-based arithmetic-geometric mean approximation (PBAGM) algorithm and the successive convex approximation (SCA)-based method to solve them. Numerical results verify the superiority of the proposed algorithm over the baseline schemes.
Spectral efficiency improvement is a key focus in most wireless communication systems and achieved by various means such as using large antenna arrays and/or advanced modulation schemes and signal formats. This work proposes to further improve spectral efficiency through combining non-orthogonal spectrally efficient frequency division multiplexing (SEFDM) systems with index modulation (IM), which can efficiently make use of the indices of activated subcarriers as communication information. Recent research has verified that IM may be used with SEFDM to alleviate inter-carrier interference (ICI) and improve error performance. This work proposes new SEFDM signal formats based on novel activation pattern designs, which limit the locations of activated subcarriers and enable a variable number of activated subcarriers in each SEFDM subblock. SEFDM-IM system designs are developed by jointly considering activation patterns, modulation schemes and signal waveform formats, with a set of solutions evaluated under different spectral efficiency scenarios. Detailed modelling of coded systems and simulation studies reveal that the proposed designs not only lead to better bit error rate (BER) but also lower peak-to-average power ratio (PAPR) and reduced computational complexity relative to other reported index-modulated systems.
With the rise of the gig economy, online language tutoring platforms are becoming increasingly popular. These platforms provide temporary and flexible jobs for native speakers as tutors and allow language learners to have one-on-one speaking practices on demand, on which learners occasionally practice the language with different tutors. With such distributed tutorship, learners can hold flexible schedules and receive diverse feedback. However, learners face challenges in consistently tracking their learning progress because different tutors provide feedback from diverse standards and perspectives, and hardly refer to learners' previous experiences with other tutors. We present RLens, a visualization system for facilitating learners' learning progress reflection by grouping different tutors' feedback, tracking how each feedback type has been addressed across learning sessions, and visualizing the learning progress. We validate our design through a between-subjects study with 40 real-world learners. Results show that learners can successfully analyze their progress and common language issues under distributed tutorship with RLens, while most learners using the baseline interface had difficulty achieving reflection tasks. We further discuss design considerations of computer-aided systems for supporting learning under distributed tutorship.
Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.
Multi-camera vehicle tracking is one of the most complicated tasks in Computer Vision as it involves distinct tasks including Vehicle Detection, Tracking, and Re-identification. Despite the challenges, multi-camera vehicle tracking has immense potential in transportation applications including speed, volume, origin-destination (O-D), and routing data generation. Several recent works have addressed the multi-camera tracking problem. However, most of the effort has gone towards improving accuracy on high-quality benchmark datasets while disregarding lower camera resolutions, compression artifacts and the overwhelming amount of computational power and time needed to carry out this task on its edge and thus making it prohibitive for large-scale and real-time deployment. Therefore, in this work we shed light on practical issues that should be addressed for the design of a multi-camera tracking system to provide actionable and timely insights. Moreover, we propose a real-time city-scale multi-camera vehicle tracking system that compares favorably to computationally intensive alternatives and handles real-world, low-resolution CCTV instead of idealized and curated video streams. To show its effectiveness, in addition to integration into the Regional Integrated Transportation Information System (RITIS), we participated in the 2021 NVIDIA AI City multi-camera tracking challenge and our method is ranked among the top five performers on the public leaderboard.
The intelligent reflecting surface (IRS) alters the behavior of wireless media and, consequently, has potential to improve the performance and reliability of wireless systems such as communications and radar remote sensing. Recently, integrated sensing and communications (ISAC) has been widely studied as a means to efficiently utilize spectrum and thereby save cost and power. This article investigates the role of IRS in the future ISAC paradigms. While there is a rich heritage of recent research into IRS-assisted communications, the IRS-assisted radars and ISAC remain relatively unexamined. We discuss the putative advantages of IRS deployment, such as coverage extension, interference suppression, and enhanced parameter estimation, for both communications and radar. We introduce possible IRS-assisted ISAC scenarios with common and dedicated surfaces. The article provides an overview of related signal processing techniques and the design challenges, such as wireless channel acquisition, waveform design, and security.
We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.