亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Successfully achieving bipedal locomotion remains challenging due to real-world factors such as model uncertainty, random disturbances, and imperfect state estimation. In this work, we propose a novel metric for locomotive robustness -- the estimated size of the hybrid forward invariant set associated with the step-to-step dynamics. Here, the forward invariant set can be loosely interpreted as the region of attraction for the discrete-time dynamics. We illustrate the use of this metric towards synthesizing nominal walking gaits using a simulation-in-the-loop learning approach. Further, we leverage discrete-time barrier functions and a sampling-based approach to approximate sets that are maximally forward invariant. Lastly, we experimentally demonstrate that this approach results in successful locomotion for both flat-foot walking and multi-contact walking on the Atalante lower-body exoskeleton.

相關內容

We present COmpetitive Mechanisms for Efficient Transfer (COMET), a modular world model which leverages reusable, independent mechanisms across different environments. COMET is trained on multiple environments with varying dynamics via a two-step process: competition and composition. This enables the model to recognise and learn transferable mechanisms. Specifically, in the competition phase, COMET is trained with a winner-takes-all gradient allocation, encouraging the emergence of independent mechanisms. These are then re-used in the composition phase, where COMET learns to re-compose learnt mechanisms in ways that capture the dynamics of intervened environments. In so doing, COMET explicitly reuses prior knowledge, enabling efficient and interpretable adaptation. We evaluate COMET on environments with image-based observations. In contrast to competitive baselines, we demonstrate that COMET captures recognisable mechanisms without supervision. Moreover, we show that COMET is able to adapt to new environments with varying numbers of objects with improved sample efficiency compared to more conventional finetuning approaches.

According to the World Health Organization, the involvement of Vulnerable Road Users (VRUs) in traffic accidents remains a significant concern, with VRUs accounting for over half of traffic fatalities. The increase of automation and connectivity levels of vehicles has still an uncertain impact on VRU safety. By deploying the Collective Perception Service (CPS), vehicles can include information about VRUs in Vehicle-to-Everything (V2X) messages, thus raising the general perception of the environment. Although an increased awareness is considered positive, one could argue that the awareness ratio, the metric used to measure perception, is only implicitly connected to the VRUs' safety. This paper introduces a tailored metric, the Risk Factor (RF), to measure the risk level for the interactions between Connected Automated Vehicles (CAVs) and VRUs. By evaluating the RF, we assess the impact of V2X communication on VRU risk mitigation. Our results show that high V2X penetration rates can reduce mean risk, quantified by our proposed metric, by up to 44%. Although the median risk value shows a significant decrease, suggesting a reduction in overall risk, the distribution of risk values reveals that CPS's mitigation effectiveness is overestimated, which is indicated by the divergence between RF and awareness ratio. Additionally, by analyzing a real-world traffic dataset, we pinpoint high-risk locations within a scenario, identifying areas near intersections and behind parked cars as especially dangerous. Our methodology can be ported and applied to other scenarios in order to identify high-risk areas. We value the proposed RF as an insightful metric for quantifying VRU safety in a highly automated and connected environment.

Anomaly detection in real-world scenarios poses challenges due to dynamic and often unknown anomaly distributions, requiring robust methods that operate under an open-world assumption. This challenge is exacerbated in practical settings, where models are employed by private organizations, precluding data sharing due to privacy and competitive concerns. Despite potential benefits, the sharing of anomaly information across organizations is restricted. This paper addresses the question of enhancing outlier detection within individual organizations without compromising data confidentiality. We propose a novel method leveraging representation learning and federated learning techniques to improve the detection of unknown anomalies. Specifically, our approach utilizes latent representations obtained from client-owned autoencoders to refine the decision boundary of inliers. Notably, only model parameters are shared between organizations, preserving data privacy. The efficacy of our proposed method is evaluated on two standard financial tabular datasets and an image dataset for anomaly detection in a distributed setting. The results demonstrate a strong improvement in the classification of unknown outliers during the inference phase for each organization's model.

The rapidly developing Large Vision Language Models (LVLMs) have shown notable capabilities on a range of multi-modal tasks, but still face the hallucination phenomena where the generated texts do not align with the given contexts, significantly restricting the usages of LVLMs. Most previous work detects and mitigates hallucination at the coarse-grained level or requires expensive annotation (e.g., labeling by proprietary models or human experts). To address these issues, we propose detecting and mitigating hallucinations in LVLMs via fine-grained AI feedback. The basic idea is that we generate a small-size sentence-level hallucination annotation dataset by proprietary models, whereby we train a hallucination detection model which can perform sentence-level hallucination detection, covering primary hallucination types (i.e., object, attribute, and relationship). Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model. Furthermore, we propose differentiating the severity of hallucinations, and introducing a Hallucination Severity-Aware Direct Preference Optimization (HSA-DPO) for mitigating hallucination in LVLMs by incorporating the severity of hallucinations into preference learning. Extensive experiments demonstrate the effectiveness of our method.

Doubly robust estimators have gained widespread popularity in various fields due to their ability to provide unbiased estimates under model misspecification. However, the asymptotic theory for doubly robust estimators with continuous-time nuisance parameters remains largely unexplored. In this short communication, we address this gap by developing a general asymptotic theory for a class of doubly robust estimating equations involving stochastic processes and Riemann-Stieltjes integrals. We introduce generic assumptions on the nuisance parameter estimators that ensure the consistency and asymptotic normality of the resulting doubly robust estimator. Our results cover both the model doubly robust estimator, which relies on parametric or semiparametric models, and the rate doubly robust estimator, which allows for flexible machine learning methods. We discuss the implications of our findings and highlight the key differences between the continuous-time setting and the classical theory for doubly robust estimators. Our work provides a solid theoretical foundation for the use of doubly robust estimators in complex settings with continuous-time nuisance parameters, paving the way for future research and applications.

We propose a reconfigurable intelligent surface (RIS)-assisted underlay spectrum sharing system, in which a RIS-assisted secondary network shares the spectrum licensed for a primary network. The secondary network consists of a secondary source (SS), an RIS, and a secondary destination (SD), operating in a Rician fading environment. We study the performance of the secondary network while considering a peak power constraint at the SS and an interference power constraint at the primary receiver (PR). Initially, we characterize the statistics of the signal-to-noise ratio (SNR) of the RIS-assisted secondary network by deriving novel analytical expressions for the cumulative distribution function (CDF) and probability density function (PDF) in terms of the incomplete H-function. Building upon the SNR statistics, we analyze the outage probability, ergodic capacity, and average bit error rate, subsequently deriving novel exact expressions for these performance measures. Furthermore, we obtain novel asymptotic expressions for the performance measures of interest when the peak power of the SS is high. Finally, we conduct exhaustive Monte-Carlo simulations to confirm the correctness of our theoretical analysis.

A critical piece of the modern information retrieval puzzle is approximate nearest neighbor search. Its objective is to return a set of $k$ data points that are closest to a query point, with its accuracy measured by the proportion of exact nearest neighbors captured in the returned set. One popular approach to this question is clustering: The indexing algorithm partitions data points into non-overlapping subsets and represents each partition by a point such as its centroid. The query processing algorithm first identifies the nearest clusters -- a process known as routing -- then performs a nearest neighbor search over those clusters only. In this work, we make a simple observation: The routing function solves a ranking problem. Its quality can therefore be assessed with a ranking metric, making the function amenable to learning-to-rank. Interestingly, ground-truth is often freely available: Given a query distribution in a top-$k$ configuration, the ground-truth is the set of clusters that contain the exact top-$k$ vectors. We develop this insight and apply it to Maximum Inner Product Search (MIPS). As we demonstrate empirically on various datasets, learning a simple linear function consistently improves the accuracy of clustering-based MIPS.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司