亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Interaction is critical for data analysis and sensemaking. However, designing interactive physicalizations is challenging as it requires cross-disciplinary knowledge in visualization, fabrication, and electronics. Interactive physicalizations are typically produced in an unstructured manner, resulting in unique solutions for a specific dataset, problem, or interaction that cannot be easily extended or adapted to new scenarios or future physicalizations. To mitigate these challenges, we introduce a computational design pipeline to 3D print network physicalizations with integrated sensing capabilities. Networks are ubiquitous, yet their complex geometry also requires significant engineering considerations to provide intuitive, effective interactions for exploration. Using our pipeline, designers can readily produce network physicalizations supporting selection-the most critical atomic operation for interaction-by touch through capacitive sensing and computational inference. Our computational design pipeline introduces a new design paradigm by concurrently considering the form and interactivity of a physicalization into one cohesive fabrication workflow. We evaluate our approach using (i) computational evaluations, (ii) three usage scenarios focusing on general visualization tasks, and (iii) expert interviews. The design paradigm introduced by our pipeline can lower barriers to physicalization research, creation, and adoption.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 控制器 · 優化器 · 泛函 · SimPLe ·
2023 年 9 月 29 日

Control barrier functions (CBFs) provide a simple yet effective way for safe control synthesis. Recently, work has been done using differentiable optimization based methods to systematically construct CBFs for static obstacle avoidance tasks between geometric shapes. In this work, we extend the application of differentiable optimization based CBFs to perform dynamic obstacle avoidance tasks. We show that by using the time-varying CBF (TVCBF) formulation, we can perform obstacle avoidance for dynamic geometric obstacles. Additionally, we show how to alter the TVCBF constraint to consider measurement noise and actuation limits. To demonstrate the efficacy of our proposed approach, we first compare its performance with a model predictive control based method on a simulated dynamic obstacle avoidance task with non-ellipsoidal obstacles. Then, we demonstrate the performance of our proposed approach in experimental studies using a 7-degree-of-freedom Franka Research 3 robotic manipulator.

Detecting problematic content, such as hate speech, is a multifaceted and ever-changing task, influenced by social dynamics, user populations, diversity of sources, and evolving language. There has been significant efforts, both in academia and in industry, to develop annotated resources that capture various aspects of problematic content. Due to researchers' diverse objectives, the annotations are inconsistent and hence, reports of progress on detection of problematic content are fragmented. This pattern is expected to persist unless we consolidate resources considering the dynamic nature of the problem. We propose integrating the available resources, and leveraging their dynamic nature to break this pattern. In this paper, we introduce a continual learning benchmark and framework for problematic content detection comprising over 84 related tasks encompassing 15 annotation schemas from 8 sources. Our benchmark creates a novel measure of progress: prioritizing the adaptability of classifiers to evolving tasks over excelling in specific tasks. To ensure the continuous relevance of our framework, we designed it so that new tasks can easily be integrated into the benchmark. Our baseline results demonstrate the potential of continual learning in capturing the evolving content and adapting to novel manifestations of problematic content.

Uncertainty quantification is crucial for the deployment of image restoration models in safety-critical domains, like autonomous driving and biological imaging. To date, methods for uncertainty visualization have mainly focused on per-pixel estimates. However, a heatmap of per-pixel variances is typically of little practical use, as it does not capture the strong correlations between pixels. A more natural measure of uncertainty corresponds to the variances along the principal components (PCs) of the posterior distribution. Theoretically, the PCs can be computed by applying PCA on samples generated from a conditional generative model for the input image. However, this requires generating a very large number of samples at test time, which is painfully slow with the current state-of-the-art (diffusion) models. In this work, we present a method for predicting the PCs of the posterior distribution for any input image, in a single forward pass of a neural network. Our method can either wrap around a pre-trained model that was trained to minimize the mean square error (MSE), or can be trained from scratch to output both a predicted image and the posterior PCs. We showcase our method on multiple inverse problems in imaging, including denoising, inpainting, super-resolution, and biological image-to-image translation. Our method reliably conveys instance-adaptive uncertainty directions, achieving uncertainty quantification comparable with posterior samplers while being orders of magnitude faster. Examples are available at //eliasnehme.github.io/NPPC/

Scientific research is increasingly reliant on computational methods, posing challenges for ensuring research reproducibility. This study focuses on the field of artificial intelligence (AI) and introduces a new framework for evaluating AI platforms for reproducibility from a cyber security standpoint to address the security challenges associated with AI research. Using this framework, five popular AI reproducibility platforms; Floydhub, BEAT, Codalab, Kaggle, and OpenML were assessed. The analysis revealed that none of these platforms fully incorporates the necessary cyber security measures essential for robust reproducibility. Kaggle and Codalab, however, performed better in terms of implementing cyber security measures covering aspects like security, privacy, usability, and trust. Consequently, the study provides tailored recommendations for different user scenarios, including individual researchers, small laboratories, and large corporations. It emphasizes the importance of integrating specific cyber security features into AI platforms to address the challenges associated with AI reproducibility, ultimately advancing reproducibility in this field. Moreover, the proposed framework can be applied beyond AI platforms, serving as a versatile tool for evaluating a wide range of systems and applications from a cyber security perspective.

The individualized treatment rule (ITR), which recommends an optimal treatment based on individual characteristics, has drawn considerable interest from many areas such as precision medicine, personalized education, and personalized marketing. Existing ITR estimation methods mainly adopt one of two or more treatments. However, a combination of multiple treatments could be more powerful in various areas. In this paper, we propose a novel Double Encoder Model (DEM) to estimate the individualized treatment rule for combination treatments. The proposed double encoder model is a nonparametric model which not only flexibly incorporates complex treatment effects and interaction effects among treatments, but also improves estimation efficiency via the parameter-sharing feature. In addition, we tailor the estimated ITR to budget constraints through a multi-choice knapsack formulation, which enhances our proposed method under restricted-resource scenarios. In theory, we provide the value reduction bound with or without budget constraints, and an improved convergence rate with respect to the number of treatments under the DEM. Our simulation studies show that the proposed method outperforms the existing ITR estimation in various settings. We also demonstrate the superior performance of the proposed method in PDX data that recommends optimal combination treatments to shrink the tumor size of the colorectal cancer.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司