亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing genetic programming (GP) methods are typically designed based on a certain representation, such as tree-based or linear representations. These representations show various pros and cons in different domains. However, due to the complicated relationships among representation and fitness landscapes of GP, it is hard to intuitively determine which GP representation is the most suitable for solving a certain problem. Evolving programs (or models) with multiple representations simultaneously can alternatively search on different fitness landscapes since representations are highly related to the search space that essentially defines the fitness landscape. Fully using the latent synergies among different GP individual representations might be helpful for GP to search for better solutions. However, existing GP literature rarely investigates the simultaneous effective use of evolving multiple representations. To fill this gap, this paper proposes a multi-representation GP algorithm based on tree-based and linear representations, which are two commonly used GP representations. In addition, we develop a new cross-representation crossover operator to harness the interplay between tree-based and linear representations. Empirical results show that navigating the learned knowledge between basic tree-based and linear representations successfully improves the effectiveness of GP with solely tree-based or linear representation in solving symbolic regression and dynamic job shop scheduling problems.

相關內容

Federated Learning (FL) is a distributed machine learning approach that maintains data privacy by training on decentralized data sources. Similar to centralized machine learning, FL is also susceptible to backdoor attacks. Most backdoor attacks in FL assume a predefined target class and require control over a large number of clients or knowledge of benign clients' information. Furthermore, they are not imperceptible and are easily detected by human inspection due to clear artifacts left on the poison data. To overcome these challenges, we propose Venomancer, an effective backdoor attack that is imperceptible and allows target-on-demand. Specifically, imperceptibility is achieved by using a visual loss function to make the poison data visually indistinguishable from the original data. Target-on-demand property allows the attacker to choose arbitrary target classes via conditional adversarial training. Additionally, experiments showed that the method is robust against state-of-the-art defenses such as Norm Clipping, Weak DP, Krum, and Multi-Krum. The source code is available at //anonymous.4open.science/r/Venomancer-3426.

The advancements of machine learning-based (ML) decision-making algorithms created various research and industrial opportunities. One of these areas is ML-based near-real-time network management applications (xApps) in Open-Radio Access Network (O-RAN). Normally, xApps are designed solely for the desired objectives, and fine-tuned for deployment. However, telecommunication companies can employ multiple xApps and deploy them in overlapping areas. Consider the different design objectives of xApps, the deployment might cause conflicts. To prevent such conflicts, we proposed the xApp distillation method that distills knowledge from multiple xApps, then uses this knowledge to train a single model that has retained the capabilities of Previous xApps. Performance evaluations show that compared conflict mitigation schemes can cause up to six times more network outages than xApp distillation in some cases.

While extensive research has explored the use of large language models (LLMs) for table-based reasoning, most approaches struggle with scalability when applied to large tables. To maintain the superior comprehension abilities of LLMs in these scenarios, we introduce ALTER(Augmentation for Large-Table-Based Reasoning)-a framework designed to harness the latent augmentation potential in both free-form natural language (NL) questions, via the query augmentor, and semi-structured tabular data, through the table augmentor. By utilizing only a small subset of relevant data from the table and supplementing it with pre-augmented schema, semantic, and literal information, ALTER achieves outstanding performance on table-based reasoning benchmarks. We also provide a detailed analysis of large-table scenarios, comparing different methods and various partitioning principles. In these scenarios, our method outperforms all other approaches and exhibits robustness and efficiency against perturbations.

Protecting Personal Identifiable Information (PII) in text data is crucial for privacy, but current PII generalization methods face challenges such as uneven data distributions and limited context awareness. To address these issues, we propose two approaches: a feature-based method using machine learning to improve performance on structured inputs, and a novel context-aware framework that considers the broader context and semantic relationships between the original text and generalized candidates. The context-aware approach employs Multilingual-BERT for text representation, functional transformations, and mean squared error scoring to evaluate candidates. Experiments on the WikiReplace dataset demonstrate the effectiveness of both methods, with the context-aware approach outperforming the feature-based one across different scales. This work contributes to advancing PII generalization techniques by highlighting the importance of feature selection, ensemble learning, and incorporating contextual information for better privacy protection in text anonymization.

Retrieval-augmented text generation (RAG) addresses the common limitations of large language models (LLMs), such as hallucination, by retrieving information from an updatable external knowledge base. However, existing approaches often require dedicated backend servers for data storage and retrieval, thereby limiting their applicability in use cases that require strict data privacy, such as personal finance, education, and medicine. To address the pressing need for client-side dense retrieval, we introduce MeMemo, the first open-source JavaScript toolkit that adapts the state-of-the-art approximate nearest neighbor search technique HNSW to browser environments. Developed with modern and native Web technologies, such as IndexedDB and Web Workers, our toolkit leverages client-side hardware capabilities to enable researchers and developers to efficiently search through millions of high-dimensional vectors in the browser. MeMemo enables exciting new design and research opportunities, such as private and personalized content creation and interactive prototyping, as demonstrated in our example application RAG Playground. Reflecting on our work, we discuss the opportunities and challenges for on-device dense retrieval. MeMemo is available at //github.com/poloclub/mememo.

Large language model (LLM)-based applications consist of both LLM and non-LLM components, each contributing to the end-to-end latency. Despite great efforts to optimize LLM inference, end-to-end workflow optimization has been overlooked. Existing frameworks employ coarse-grained orchestration with task modules, which confines optimizations to within each module and yields suboptimal scheduling decisions. We propose fine-grained end-to-end orchestration, which utilizes task primitives as the basic units and represents each query's workflow as a primitive-level dataflow graph. This explicitly exposes a much larger design space, enables optimizations in parallelization and pipelining across primitives of different modules, and enhances scheduling to improve application-level performance. We build Teola, a novel orchestration framework for LLM-based applications that implements this scheme. Comprehensive experiments show that Teola can achieve up to 2.09x speedup over existing systems across various popular LLM applications.

Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司