亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Humans possess an extraordinary ability to selectively focus on the sound source of interest amidst complex acoustic environments, commonly referred to as cocktail party scenarios. In an attempt to replicate this remarkable auditory attention capability in machines, target speaker extraction (TSE) models have been developed. These models leverage the pre-registered cues of the target speaker to extract the sound source of interest. However, the effectiveness of these models is hindered in real-world scenarios due to the unreliable or even absence of pre-registered cues. To address this limitation, this study investigates the integration of natural language description to enhance the feasibility, controllability, and performance of existing TSE models. Specifically, we propose a model named LLM-TSE, wherein a large language model (LLM) to extract useful semantic cues from the user's typed text input. These cues can serve as independent extraction cues, task selectors to control the TSE process, or complement the pre-registered cues. Our experimental results demonstrate competitive performance when only text-based cues are presented, the effectiveness of using input text as a task selector, and a new state-of-the-art when combining text-based cues with pre-registered cues. To our knowledge, this is the first study to successfully incorporate LLMs to guide target speaker extraction, which can be a cornerstone for cocktail party problem research.

相關內容

IEEE軟件工程事務處理對定義明確的理論結果和對軟件的構建、分析或管理有潛在影響的實證研究感興趣。這些交易的范圍從制定原則的機制到將這些原則應用到具體環境。具體的主題領域包括:a)開發和維護方法和模型,例如軟件系統的規范、設計和實現的技術和原則,包括符號和過程模型;b)評估方法,例如軟件測試和驗證、可靠性模型、測試和診斷程序,用于錯誤控制的軟件冗余和設計,以及過程和產品各個方面的測量和評估;c)軟件項目管理,例如生產力因素、成本模型、進度和組織問題、標準;d)工具和環境,例如特定工具,集成工具環境,包括相關的體系結構、數據庫、并行和分布式處理問題;e)系統問題,例如硬件-軟件權衡;f)最新調查,提供對某一特定關注領域歷史發展的綜合和全面審查。 官網地址:

The performance of speaker verification (SV) models may drop dramatically in noisy environments. A speech enhancement (SE) module can be used as a front-end strategy. However, existing SE methods may fail to bring performance improvements to downstream SV systems due to artifacts in the predicted signals of SE models. To compensate for artifacts, we propose a generic denoising framework named LC4SV, which can serve as a pre-processor for various unknown downstream SV models. In LC4SV, we employ a learning-based interpolation agent to automatically generate the appropriate coefficients between the enhanced signal and its noisy input to improve SV performance in noisy environments. Our experimental results demonstrate that LC4SV consistently improves the performance of various unseen SV systems. To the best of our knowledge, this work is the first attempt to develop a learning-based interpolation scheme aiming at improving SV performance in noisy environments.

The performance of acoustic models degrades notably in noisy environments. Speech enhancement (SE) can be used as a front-end strategy to aid automatic speech recognition (ASR) systems. However, existing training objectives of SE methods are not fully effective at integrating speech-text and noisy-clean paired data for training toward unseen ASR systems. In this study, we propose a general denoising framework, D4AM, for various downstream acoustic models. Our framework fine-tunes the SE model with the backward gradient according to a specific acoustic model and the corresponding classification objective. In addition, our method aims to consider the regression objective as an auxiliary loss to make the SE model generalize to other unseen acoustic models. To jointly train an SE unit with regression and classification objectives, D4AM uses an adjustment scheme to directly estimate suitable weighting coefficients rather than undergoing a grid search process with additional training costs. The adjustment scheme consists of two parts: gradient calibration and regression objective weighting. The experimental results show that D4AM can consistently and effectively provide improvements to various unseen acoustic models and outperforms other combination setups. Specifically, when evaluated on the Google ASR API with real noisy data completely unseen during SE training, D4AM achieves a relative WER reduction of 24.65% compared with the direct feeding of noisy input. To our knowledge, this is the first work that deploys an effective combination scheme of regression (denoising) and classification (ASR) objectives to derive a general pre-processor applicable to various unseen ASR systems. Our code is available at //github.com/ChangLee0903/D4AM.

Neural networks' expressiveness comes at the cost of complex, black-box models that often extrapolate poorly beyond the domain of the training dataset, conflicting with the goal of finding compact analytic expressions to describe scientific data. We introduce OccamNet, a neural network model that finds interpretable, compact, and sparse symbolic fits to data, \`a la Occam's razor. Our model defines a probability distribution over functions with efficient sampling and function evaluation. We train by sampling functions and biasing the probability mass toward better fitting solutions, backpropagating using cross-entropy matching in a reinforcement-learning loss. OccamNet can identify symbolic fits for a variety of problems, including analytic and non-analytic functions, implicit functions, and simple image classification, and can outperform state-of-the-art symbolic regression methods on real-world regression datasets. Our method requires a minimal memory footprint, fits complicated functions in minutes on a single CPU, and scales on a GPU.

Audio-visual segmentation (AVS) is a complex task that involves accurately segmenting the corresponding sounding object based on audio-visual queries. Successful audio-visual learning requires two essential components: 1) an unbiased dataset with high-quality pixel-level multi-class labels, and 2) a model capable of effectively linking audio information with its corresponding visual object. However, these two requirements are only partially addressed by current methods, with training sets containing biased audio-visual data, and models that generalise poorly beyond this biased training set. In this work, we propose a new strategy to build cost-effective and relatively unbiased audio-visual semantic segmentation benchmarks. Our strategy, called Visual Post-production (VPO), explores the observation that it is not necessary to have explicit audio-visual pairs extracted from single video sources to build such benchmarks. We also refine the previously proposed AVSBench to transform it into the audio-visual semantic segmentation benchmark AVSBench-Single+. Furthermore, this paper introduces a new pixel-wise audio-visual contrastive learning method to enable a better generalisation of the model beyond the training set. We verify the validity of the VPO strategy by showing that state-of-the-art (SOTA) models trained with datasets built by matching audio and visual data from different sources or with datasets containing audio and visual data from the same video source produce almost the same accuracy. Then, using the proposed VPO benchmarks and AVSBench-Single+, we show that our method produces more accurate audio-visual semantic segmentation than SOTA models. Code and dataset will be available.

Current approaches to empathetic response generation typically encode the entire dialogue history directly and put the output into a decoder to generate friendly feedback. These methods focus on modelling contextual information but neglect capturing the direct intention of the speaker. We argue that the last utterance in the dialogue empirically conveys the intention of the speaker. Consequently, we propose a novel model named InferEM for empathetic response generation. We separately encode the last utterance and fuse it with the entire dialogue through the multi-head attention based intention fusion module to capture the speaker's intention. Besides, we utilize previous utterances to predict the last utterance, which simulates human's psychology to guess what the interlocutor may speak in advance. To balance the optimizing rates of the utterance prediction and response generation, a multi-task learning strategy is designed for InferEM. Experimental results demonstrate the plausibility and validity of InferEM in improving empathetic expression.

Despite breakthroughs in audio generation models, their capabilities are often confined to domain-specific conditions such as speech transcriptions and audio captions. However, real-world audio creation aims to generate harmonious audio containing various elements such as speech, music, and sound effects with controllable conditions, which is challenging to address using existing audio generation systems. We present WavJourney, a novel framework that leverages Large Language Models (LLMs) to connect various audio models for audio creation. WavJourney allows users to create storytelling audio content with diverse audio elements simply from textual descriptions. Specifically, given a text instruction, WavJourney first prompts LLMs to generate an audio script that serves as a structured semantic representation of audio elements. The audio script is then converted into a computer program, where each line of the program calls a task-specific audio generation model or computational operation function. The computer program is then executed to obtain a compositional and interpretable solution for audio creation. Experimental results suggest that WavJourney is capable of synthesizing realistic audio aligned with textually-described semantic, spatial and temporal conditions, achieving state-of-the-art results on text-to-audio generation benchmarks. Additionally, we introduce a new multi-genre story benchmark. Subjective evaluations demonstrate the potential of WavJourney in crafting engaging storytelling audio content from text. We further demonstrate that WavJourney can facilitate human-machine co-creation in multi-round dialogues. To foster future research, the code and synthesized audio are available at: //audio-agi.github.io/WavJourney_demopage/.

Microservices are increasingly used in modern applications, leading to a growing need for effective service composition solutions. However, we argue that traditional API-centric composition mechanisms (e.g., RPC, REST, and Pub/Sub) hamper the modularity of microservices. These mechanisms introduce rigid code-level coupling, scatter composition logic, and hinder visibility into cross-service data exchanges. Ultimately, these limitations complicate the maintenance and evolution of microservice-based applications. In response, we propose a rethinking of service composition and present Knactor, a new data-centric composition framework to restore the modularity that microservices were intended to offer. Knactor decouples service composition from service development, allowing composition to be implemented as explicit data exchanges among multiple services. Our initial case study suggests that Knactor simplifies service composition and creates new opportunities for optimizations.

We introduce the Song Describer dataset (SDD), a new crowdsourced corpus of high-quality audio-caption pairs, designed for the evaluation of music-and-language models. The dataset consists of 1.1k human-written natural language descriptions of 706 music recordings, all publicly accessible and released under Creative Common licenses. To showcase the use of our dataset, we benchmark popular models on three key music-and-language tasks (music captioning, text-to-music generation and music-language retrieval). Our experiments highlight the importance of cross-dataset evaluation and offer insights into how researchers can use SDD to gain a broader understanding of model performance.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

北京阿比特科技有限公司