As mobile networks proliferate, we are experiencing a strong diversification of services, which requires greater flexibility from the existing network. Network slicing is proposed as a promising solution for resource utilization in 5G and future networks to address this dire need. In network slicing, dynamic resource orchestration and network slice management are crucial for maximizing resource utilization. Unfortunately, this process is too complex for traditional approaches to be effective due to a lack of accurate models and dynamic hidden structures. We formulate the problem as a Constrained Markov Decision Process (CMDP) without knowing models and hidden structures. Additionally, we propose to solve the problem using CLARA, a Constrained reinforcement LeArning based Resource Allocation algorithm. In particular, we analyze cumulative and instantaneous constraints using adaptive interior-point policy optimization and projection layer, respectively. Evaluations show that CLARA clearly outperforms baselines in resource allocation with service demand guarantees.
With the advent of Network Function Virtualization (NFV), network services that traditionally run on proprietary dedicated hardware can now be realized using Virtual Network Functions (VNFs) that are hosted on general-purpose commodity hardware. This new network paradigm offers a great flexibility to Internet service providers (ISPs) for efficiently operating their networks (collecting network statistics, enforcing management policies, etc.). However, introducing NFV requires an investment to deploy VNFs at certain network nodes (called VNF-nodes), which has to account for practical constraints such as the deployment budget and the VNF-node capacity. To that end, it is important to design a joint VNF-nodes placement and capacity allocation algorithm that can maximize the total amount of network flows that are fully processed by the VNF-nodes while respecting such practical constraints. In contrast to most prior work that often neglects either the budget constraint or the capacity constraint, we explicitly consider both of them. We prove that accounting for these constraints introduces several new challenges. Specifically, we prove that the studied problem is not only NP-hard but also non-submodular. To address these challenges, we introduce a novel relaxation method such that the objective function of the relaxed placement subproblem becomes submodular. Leveraging this useful submodular property, we propose two algorithms that achieve an approximation ratio of $\frac{1}{2}(1-1/e)$ and $\frac{1}{3}(1-1/e)$ for the original non-relaxed problem, respectively. Finally, we corroborate the effectiveness of the proposed algorithms through extensive evaluations using trace-driven simulations.
A growing number of service providers are exploring methods to improve server utilization, reduce power consumption, and reduce total cost of ownership by co-scheduling high-priority latency-critical workloads with best-effort workloads. This practice requires strict resource allocation between workloads to reduce resource contention and maintain Quality of Service (QoS) guarantees. Prior resource allocation works have been shown to improve server utilization under ideal circumstances, yet often compromise QoS guarantees or fail to find valid resource allocations in more dynamic operating environments. Further, prior works are fundamentally reliant upon QoS measurements that can, in practice, exhibit significant transient fluctuations, thus stable control behavior cannot be reliably achieved. In this paper, we propose a novel framework for dynamic resource allocation based on proactive QoS prediction. These predictions help guide a reinforcement-learning-based resource controller towards optimal resource allocations while avoiding transient QoS violations due to fluctuating workload demands. Evaluation shows that the proposed method incurs 4.3x fewer QoS violations, reduces severity of QoS violations by 3.7x, improves best-effort workload performance, and improves overall power efficiency compared with prior work.
Recently, the concept of open radio access network (O-RAN) has been proposed, which aims to adopt intelligence and openness in the next generation radio access networks (RAN). It provides standardized interfaces and the ability to host network applications from third-party vendors by x-applications (xAPPs), which enables higher flexibility for network management. However, this may lead to conflicts in network function implementations, especially when these functions are implemented by different vendors. In this paper, we aim to mitigate the conflicts between xAPPs for near-real-time (near-RT) radio intelligent controller (RIC) of O-RAN. In particular, we propose a team learning algorithm to enhance the performance of the network by increasing cooperation between xAPPs. We compare the team learning approach with independent deep Q-learning where network functions individually optimize resources. Our simulations show that team learning has better network performance under various user mobility and traffic loads. With 6 Mbps traffic load and 20 m/s user movement speed, team learning achieves 8% higher throughput and 64.8% lower PDR.
Safety exploration can be regarded as a constrained Markov decision problem where the expected long-term cost is constrained. Previous off-policy algorithms convert the constrained optimization problem into the corresponding unconstrained dual problem by introducing the Lagrangian relaxation technique. However, the cost function of the above algorithms provides inaccurate estimations and causes the instability of the Lagrange multiplier learning. In this paper, we present a novel off-policy reinforcement learning algorithm called Conservative Distributional Maximum a Posteriori Policy Optimization (CDMPO). At first, to accurately judge whether the current situation satisfies the constraints, CDMPO adapts distributional reinforcement learning method to estimate the Q-function and C-function. Then, CDMPO uses a conservative value function loss to reduce the number of violations of constraints during the exploration process. In addition, we utilize Weighted Average Proportional Integral Derivative (WAPID) to update the Lagrange multiplier stably. Empirical results show that the proposed method has fewer violations of constraints in the early exploration process. The final test results also illustrate that our method has better risk control.
We study a single task allocation problem where each worker connects to some other workers to form a network and the task requester only connects to some of the workers. The goal is to design an allocation mechanism such that each worker is incentivized to invite her neighbours to join the allocation, although they are competing for the task. Moreover, the performance of each worker is uncertain, which is modelled as the quality level of her task execution. The literature has proposed solutions to tackle the uncertainty problem by paying them after verifying their execution. Here, we extend the problem to the network setting. The challenge is that the requester relies on the workers to invite each other to find the best worker, and the performance of each worker is also unknown to the task requester. In this paper, we propose a new mechanism to solve the two challenges at the same time. The mechanism guarantees that inviting more workers and reporting/performing according to her true ability is a dominant strategy for each worker. We believe that the new solution can be widely applied in the digital economy powered by social connections such as crowdsourcing and contests.
We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical interpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.
Meta-reinforcement learning (meta-RL) aims to learn from multiple training tasks the ability to adapt efficiently to unseen test tasks. Despite the success, existing meta-RL algorithms are known to be sensitive to the task distribution shift. When the test task distribution is different from the training task distribution, the performance may degrade significantly. To address this issue, this paper proposes Model-based Adversarial Meta-Reinforcement Learning (AdMRL), where we aim to minimize the worst-case sub-optimality gap -- the difference between the optimal return and the return that the algorithm achieves after adaptation -- across all tasks in a family of tasks, with a model-based approach. We propose a minimax objective and optimize it by alternating between learning the dynamics model on a fixed task and finding the adversarial task for the current model -- the task for which the policy induced by the model is maximally suboptimal. Assuming the family of tasks is parameterized, we derive a formula for the gradient of the suboptimality with respect to the task parameters via the implicit function theorem, and show how the gradient estimator can be efficiently implemented by the conjugate gradient method and a novel use of the REINFORCE estimator. We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks, the generalization power to out-of-distribution tasks, and in training and test time sample efficiency, over existing state-of-the-art meta-RL algorithms.
Contextual multi-armed bandit (MAB) achieves cutting-edge performance on a variety of problems. When it comes to real-world scenarios such as recommendation system and online advertising, however, it is essential to consider the resource consumption of exploration. In practice, there is typically non-zero cost associated with executing a recommendation (arm) in the environment, and hence, the policy should be learned with a fixed exploration cost constraint. It is challenging to learn a global optimal policy directly, since it is a NP-hard problem and significantly complicates the exploration and exploitation trade-off of bandit algorithms. Existing approaches focus on solving the problems by adopting the greedy policy which estimates the expected rewards and costs and uses a greedy selection based on each arm's expected reward/cost ratio using historical observation until the exploration resource is exhausted. However, existing methods are hard to extend to infinite time horizon, since the learning process will be terminated when there is no more resource. In this paper, we propose a hierarchical adaptive contextual bandit method (HATCH) to conduct the policy learning of contextual bandits with a budget constraint. HATCH adopts an adaptive method to allocate the exploration resource based on the remaining resource/time and the estimation of reward distribution among different user contexts. In addition, we utilize full of contextual feature information to find the best personalized recommendation. Finally, in order to prove the theoretical guarantee, we present a regret bound analysis and prove that HATCH achieves a regret bound as low as $O(\sqrt{T})$. The experimental results demonstrate the effectiveness and efficiency of the proposed method on both synthetic data sets and the real-world applications.
This paper proposes a Reinforcement Learning (RL) algorithm to synthesize policies for a Markov Decision Process (MDP), such that a linear time property is satisfied. We convert the property into a Limit Deterministic Buchi Automaton (LDBA), then construct a product MDP between the automaton and the original MDP. A reward function is then assigned to the states of the product automaton, according to accepting conditions of the LDBA. With this reward function, our algorithm synthesizes a policy that satisfies the linear time property: as such, the policy synthesis procedure is "constrained" by the given specification. Additionally, we show that the RL procedure sets up an online value iteration method to calculate the maximum probability of satisfying the given property, at any given state of the MDP - a convergence proof for the procedure is provided. Finally, the performance of the algorithm is evaluated via a set of numerical examples. We observe an improvement of one order of magnitude in the number of iterations required for the synthesis compared to existing approaches.
Caching and rate allocation are two promising approaches to support video streaming over wireless network. However, existing rate allocation designs do not fully exploit the advantages of the two approaches. This paper investigates the problem of cache-enabled QoE-driven video rate allocation problem. We establish a mathematical model for this problem, and point out that it is difficult to solve the problem with traditional dynamic programming. Then we propose a deep reinforcement learning approaches to solve it. First, we model the problem as a Markov decision problem. Then we present a deep Q-learning algorithm with a special knowledge transfer process to find out effective allocation policy. Finally, numerical results are given to demonstrate that the proposed solution can effectively maintain high-quality user experience of mobile user moving among small cells. We also investigate the impact of configuration of critical parameters on the performance of our algorithm.