亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Right to be Forgotten (RTBF) was first established as the result of the ruling of Google Spain SL, Google Inc. v AEPD, Mario Costeja Gonz\'alez, and was later included as the Right to Erasure under the General Data Protection Regulation (GDPR) of European Union to allow individuals the right to request personal data be deleted by organizations. Specifically for search engines, individuals can send requests to organizations to exclude their information from the query results. It was a significant emergent right as the result of the evolution of technology. With the recent development of Large Language Models (LLMs) and their use in chatbots, LLM-enabled software systems have become popular. But they are not excluded from the RTBF. Compared with the indexing approach used by search engines, LLMs store, and process information in a completely different way. This poses new challenges for compliance with the RTBF. In this paper, we explore these challenges and provide our insights on how to implement technical solutions for the RTBF, including the use of differential privacy, machine unlearning, model editing, and prompt engineering. With the rapid advancement of AI and the increasing need of regulating this powerful technology, learning from the case of RTBF can provide valuable lessons for technical practitioners, legal experts, organizations, and authorities.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · RE · Performer · RE · Engineering ·
2023 年 11 月 7 日

[Context]: Companies are increasingly recognizing the importance of automating Requirements Engineering (RE) tasks due to their resource-intensive nature. The advent of GenAI has made these tasks more amenable to automation, thanks to its ability to understand and interpret context effectively. [Problem]: However, in the context of GenAI, prompt engineering is a critical factor for success. Despite this, we currently lack tools and methods to systematically assess and determine the most effective prompt patterns to employ for a particular RE task. [Method]: Two tasks related to requirements, specifically requirement classification and tracing, were automated using the GPT-3.5 turbo API. The performance evaluation involved assessing various prompts created using 5 prompt patterns and implemented programmatically to perform the selected RE tasks, focusing on metrics such as precision, recall, accuracy, and F-Score. [Results]: This paper evaluates the effectiveness of the 5 prompt patterns' ability to make GPT-3.5 turbo perform the selected RE tasks and offers recommendations on which prompt pattern to use for a specific RE task. Additionally, it also provides an evaluation framework as a reference for researchers and practitioners who want to evaluate different prompt patterns for different RE tasks.

Language Models (LMs) have demonstrated impressive molecule understanding ability on various 1D text-related tasks. However, they inherently lack 2D graph perception - a critical ability of human professionals in comprehending molecules' topological structures. To bridge this gap, we propose MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter. MolCA enables an LM (e.g., Galactica) to understand both text- and graph-based molecular contents via the cross-modal projector. Specifically, the cross-modal projector is implemented as a Q-Former to connect a graph encoder's representation space and an LM's text space. Further, MolCA employs a uni-modal adapter (i.e., LoRA) for the LM's efficient adaptation to downstream tasks. Unlike previous studies that couple an LM with a graph encoder via cross-modal contrastive learning, MolCA retains the LM's ability of open-ended text generation and augments it with 2D graph information. To showcase its effectiveness, we extensively benchmark MolCA on tasks of molecule captioning, IUPAC name prediction, and molecule-text retrieval, on which MolCA significantly outperforms the baselines. Our codes and checkpoints can be found at //github.com/acharkq/MolCA.

The (Perfect) Matching Cut problem is to decide if a connected graph has a (perfect) matching that is also an edge cut. The Disconnected Perfect Matching problem is to decide if a connected graph has a perfect matching that contains a matching cut. Both Matching Cut and Disconnected Perfect Matching are NP-complete for planar graphs of girth 5, whereas Perfect Matching Cut is known to be NP-complete even for subcubic bipartite graphs of arbitrarily large fixed girth. We prove that Matching Cut and Disconnected Perfect Matching are also NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree. Our result for Matching Cut resolves a 20-year old open problem. We also show that the more general problem $d$-Cut, for every fixed $d \geq 1$, is NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree. Furthermore, we show that Matching Cut, Perfect Matching Cut and Disconnected Perfect Matching are NP-complete for $H$-free graphs whenever $H$ contains a connected component with two vertices of degree at least 3. Afterwards, we update the state-of-the-art summaries for $H$-free graphs and compare them with each other, and with a known and full classification of the Maximum Matching Cut problem, which is to determine a largest matching cut of a graph $G$. Finally, by combining existing results, we obtain a complete complexity classification of Perfect Matching Cut for $H$-subgraph-free graphs where $H$ is any finite set of graphs.

Graph Neural Networks (GNNs) have emerged as a prominent graph learning model in various graph-based tasks over the years. Nevertheless, due to the vulnerabilities of GNNs, it has been empirically proved that malicious attackers could easily corrupt the fairness level of their predictions by adding perturbations to the input graph data. In this paper, we take crucial steps to study a novel problem of certifiable defense on the fairness level of GNNs. Specifically, we propose a principled framework named ELEGANT and present a detailed theoretical certification analysis for the fairness of GNNs. ELEGANT takes any GNNs as its backbone, and the fairness level of such a backbone is theoretically impossible to be corrupted under certain perturbation budgets for attackers. Notably, ELEGANT does not have any assumption over the GNN structure or parameters, and does not require re-training the GNNs to realize certification. Hence it can serve as a plug-and-play framework for any optimized GNNs ready to be deployed. We verify the satisfactory effectiveness of ELEGANT in practice through extensive experiments on real-world datasets across different backbones of GNNs, where ELEGANT is also demonstrated to be beneficial for GNN debiasing. Open-source code can be found at //github.com/yushundong/ELEGANT.

Recent studies have discovered that Chain-of-Thought prompting (CoT) can dramatically improve the performance of Large Language Models (LLMs), particularly when dealing with complex tasks involving mathematics or reasoning. Despite the enormous empirical success, the underlying mechanisms behind CoT and how it unlocks the potential of LLMs remain elusive. In this paper, we take a first step towards theoretically answering these questions. Specifically, we examine the expressivity of LLMs with CoT in solving fundamental mathematical and decision-making problems. By using circuit complexity theory, we first give impossibility results showing that bounded-depth Transformers are unable to directly produce correct answers for basic arithmetic/equation tasks unless the model size grows super-polynomially with respect to the input length. In contrast, we then prove by construction that autoregressive Transformers of constant size suffice to solve both tasks by generating CoT derivations using a commonly used math language format. Moreover, we show LLMs with CoT can handle a general class of decision-making problems known as Dynamic Programming, thus justifying its power in tackling complex real-world tasks. Finally, an extensive set of experiments show that, while Transformers always fail to directly predict the answers, they can consistently learn to generate correct solutions step-by-step given sufficient CoT demonstrations.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.

Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司