亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quasi-twisted codes are used here as the classical ingredients in the so-called Construction X for quantum error-control codes. The construction utilizes nearly self-orthogonal codes to design quantum stabilizer codes. We expand the choices of the inner product to also cover the symplectic and trace-symplectic inner products, in addition to the original Hermitian one. A refined lower bound on the minimum distance of the resulting quantum codes is established and illustrated. We report numerous record breaking quantum codes from our randomized search for inclusion in the updated online database.

相關內容

Speech encoders pretrained through self-supervised learning (SSL) have demonstrated remarkable performance in various downstream tasks, including Spoken Language Understanding (SLU) and Automatic Speech Recognition (ASR). For instance, fine-tuning SSL models for such tasks has shown significant potential, leading to improvements in the SOTA performance across challenging datasets. In contrast to existing research, this paper contributes by comparing the effectiveness of SSL approaches in the context of (i) the low-resource spoken Tunisian Arabic dialect and (ii) its combination with a low-resource SLU and ASR scenario, where only a few semantic annotations are available for fine-tuning. We conduct experiments using many SSL speech encoders on the TARIC-SLU dataset. We use speech encoders that were pre-trained on either monolingual or multilingual speech data. Some of them have also been refined without in-domain nor Tunisian data through multimodal supervised teacher-student paradigm. This study yields numerous significant findings that we are discussing in this paper.

Knowledge Graphs (KGs) are fundamental resources in knowledge-intensive tasks in NLP. Due to the limitation of manually creating KGs, KG Completion (KGC) has an important role in automatically completing KGs by scoring their links with KG Embedding (KGE). To handle many entities in training, KGE relies on Negative Sampling (NS) loss that can reduce the computational cost by sampling. Since the appearance frequencies for each link are at most one in KGs, sparsity is an essential and inevitable problem. The NS loss is no exception. As a solution, the NS loss in KGE relies on smoothing methods like Self-Adversarial Negative Sampling (SANS) and subsampling. However, it is uncertain what kind of smoothing method is suitable for this purpose due to the lack of theoretical understanding. This paper provides theoretical interpretations of the smoothing methods for the NS loss in KGE and induces a new NS loss, Triplet Adaptive Negative Sampling (TANS), that can cover the characteristics of the conventional smoothing methods. Experimental results of TransE, DistMult, ComplEx, RotatE, HAKE, and HousE on FB15k-237, WN18RR, and YAGO3-10 datasets and their sparser subsets show the soundness of our interpretation and performance improvement by our TANS.

Quantum low-density parity-check (qLDPC) codes offer a promising route to scalable fault-tolerant quantum computation with constant overhead. Recent advancements have shown that qLDPC codes can outperform the quantum memory capability of surface codes even with near-term hardware. The question of how to implement logical gates fault-tolerantly for these codes is still open. We present new examples of high-rate bivariate bicycle (BB) codes with enhanced symmetry properties. These codes feature explicit nice bases of logical operators (similar to toric codes) and support fold-transversal Clifford gates without overhead. As examples, we construct $[[98,6,12]]$ and $[[162, 8, 12]]$ BB codes which admit interesting fault-tolerant Clifford gates. Our work also lays the mathematical foundations for explicit bases of logical operators and fold-transversal gates in quantum two-block and group algebra codes, which might be of independent interest.

Simulation studies are used to evaluate and compare the properties of statistical methods in controlled experimental settings. In most cases, performing a simulation study requires knowledge of the true value of the parameter, or estimand, of interest. However, in many simulation designs, the true value of the estimand is difficult to compute analytically. Here, we illustrate the use of Monte Carlo integration to compute true estimand values in simple and complex simulation designs. We provide general pseudocode that can be replicated in any software program of choice to demonstrate key principles in using Monte Carlo integration in two scenarios: a simple three variable simulation where interest lies in the marginally adjusted odds ratio; and a more complex causal mediation analysis where interest lies in the controlled direct effect in the presence of mediator-outcome confounders affected by the exposure. We discuss general strategies that can be used to minimize Monte Carlo error, and to serve as checks on the simulation program to avoid coding errors. R programming code is provided illustrating the application of our pseudocode in these settings.

User intentions are typically formalized as evaluation rewards to be maximized when fine-tuning language models (LMs). Existing alignment methods, such as Direct Preference Optimization (DPO), are mainly tailored for pairwise preference data where rewards are implicitly defined rather than explicitly given. In this paper, we introduce a general framework for LM alignment, leveraging Noise Contrastive Estimation (NCE) to bridge the gap in handling reward datasets explicitly annotated with scalar evaluations. Our framework comprises two parallel algorithms, NCA and InfoNCA, both enabling the direct extraction of an LM policy from reward data as well as preference data. Notably, we show that the DPO loss is a special case of our proposed InfoNCA objective under pairwise preference settings, thereby integrating and extending current alignment theories. By comparing NCA and InfoNCA, we demonstrate that the well-observed decreasing-likelihood trend of DPO/InfoNCA is caused by their focus on adjusting relative likelihood across different responses. In contrast, NCA optimizes the absolute likelihood for each response, thereby effectively preventing the chosen likelihood from decreasing. We evaluate our methods in both reward and preference settings with Mistral-8*7B and 7B models. Experiments suggest that InfoNCA/NCA surpasses various preference baselines when reward datasets are available. We also find NCA significantly outperforms DPO in complex reasoning tasks like math and coding.

Our study demonstrates the effective use of Large Language Models (LLMs) for automating the classification of complex datasets. We specifically target proposals of Decentralized Autonomous Organizations (DAOs), as the clas-sification of this data requires the understanding of context and, therefore, depends on human expertise, leading to high costs associated with the task. The study applies an iterative approach to specify categories and further re-fine them and the prompt in each iteration, which led to an accuracy rate of 95% in classifying a set of 100 proposals. With this, we demonstrate the po-tential of LLMs to automate data labeling tasks that depend on textual con-text effectively.

Maximizing the likelihood of the next token is an established, statistically sound objective for pre-training language models. In this paper we show that we can train better models faster by pre-aggregating the corpus with a collapsed $n$-gram distribution. Previous studies have proposed corpus-level $n$-gram statistics as a regularizer; however, the construction and querying of such $n$-grams, if done naively, prove to be costly and significantly impede training speed, thereby limiting their application in modern large language model pre-training. We introduce an alternative compact representation of the next token distribution that, in expectation, aligns with the complete $n$-gram distribution while markedly reducing variance across mini-batches compared to the standard next-token loss. Empirically, we demonstrate that both the $n$-gram regularized model and our approximation yield substantial improvements in model quality and convergence rate compared to existing methods. Furthermore, our approximation facilitates scalability of gains to larger datasets and models compared to the straightforward $n$-gram regularization method.

TPMS is consistently described in the functional representation (F-rep) format, while modern CAD/CAM/CAE tools are built upon the boundary representation (B-rep) format. To solve this issue, translating TPMS to STEP is needed, called TPMS2STEP. This paper provides constraint matrices and convergence proof of TPMS2STEP so that $C^2$ continuity and an error bound of $2\epsilon$ on the deviation can be ensured during the translation.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

北京阿比特科技有限公司