亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Erd\H{o}s distinct distance problem is a ubiquitous problem in discrete geometry. Somewhat less well known is Erd\H{o}s' distinct angle problem, the problem of finding the minimum number of distinct angles between $n$ non-collinear points in the plane. Recent work has introduced bounds on a wide array of variants of this problem, inspired by similar variants in the distance setting. In this short note, we improve the best known upper bound for the minimum number of distinct angles formed by $n$ points in general position from $O(n^{\log_2(7)})$ to $O(n^2)$. Before this work, similar bounds relied on projections onto a generic plane from higher dimensional space. In this paper, we employ the geometric properties of a logarithmic spiral, sidestepping the need for a projection.

相關內容

We consider a causal inference model in which individuals interact in a social network and they may not comply with the assigned treatments. Estimating causal parameters is challenging in the presence of network interference of unknown form, as each individual may be influenced by both close individuals and distant ones in complex ways. Noncompliance with treatment assignment further complicates this problem, and prior methods dealing with network spillovers but disregarding the noncompliance issue may underestimate the effect of the treatment receipt on the outcome. To estimate meaningful causal parameters, we introduce a new concept of exposure mapping, which summarizes potentially complicated spillover effects into a fixed dimensional statistic of instrumental variables. We investigate identification conditions for the intention-to-treat effect and the average causal effect for compliers, while explicitly considering the possibility of misspecification of exposure mapping. Based on our identification results, we develop nonparametric estimation procedures via inverse probability weighting. Their asymptotic properties, including consistency and asymptotic normality, are investigated using an approximate neighborhood interference framework, which is convenient for dealing with unknown forms of spillovers between individuals. For an empirical illustration, we apply our method to experimental data on the anti-conflict intervention school program.

SGD with Momentum (SGDM) is a widely used family of algorithms for large-scale optimization of machine learning problems. Yet, when optimizing generic convex functions, no advantage is known for any SGDM algorithm over plain SGD. Moreover, even the most recent results require changes to the SGDM algorithms, like averaging of the iterates and a projection onto a bounded domain, which are rarely used in practice. In this paper, we focus on the convergence rate of the last iterate of SGDM. For the first time, we prove that for any constant momentum factor, there exists a Lipschitz and convex function for which the last iterate of SGDM suffers from a suboptimal convergence rate of $\Omega(\frac{\ln T}{\sqrt{T}})$ after $T$ iterations. Based on this fact, we study a class of (both adaptive and non-adaptive) Follow-The-Regularized-Leader-based SGDM algorithms with increasing momentum and shrinking updates. For these algorithms, we show that the last iterate has optimal convergence $O(\frac{1}{\sqrt{T}})$ for unconstrained convex stochastic optimization problems without projections onto bounded domains nor knowledge of $T$. Further, we show a variety of results for FTRL-based SGDM when used with adaptive stepsizes. Empirical results are shown as well.

This paper settles an open and challenging question pertaining to the design of simple high-order regularization methods for solving smooth and monotone variational inequalities (VIs). A VI involves finding $x^\star \in \mathcal{X}$ such that $\langle F(x), x - x^\star\rangle \geq 0$ for all $x \in \mathcal{X}$ and we consider the setting where $F: \mathbb{R}^d \mapsto \mathbb{R}^d$ is smooth with up to $(p-1)^{th}$-order derivatives. For $p = 2$,~\citet{Nesterov-2006-Constrained} extended the cubic regularized Newton's method to VIs with a global rate of $O(\epsilon^{-1})$.~\citet{Monteiro-2012-Iteration} proposed another second-order method which achieved an improved rate of $O(\epsilon^{-2/3}\log(1/\epsilon))$, but this method required a nontrivial binary search procedure as an inner loop. High-order methods based on similar binary search procedures have been further developed and shown to achieve a rate of $O(\epsilon^{-2/(p+1)}\log(1/\epsilon))$. However, such search procedure can be computationally prohibitive in practice and the problem of finding a simple high-order regularization methods remains as an open and challenging question in optimization theory. We propose a $p^{th}$-order method that does \textit{not} require any binary search procedure and prove that it can converge to a weak solution at a global rate of $O(\epsilon^{-2/(p+1)})$. A lower bound of $\Omega(\epsilon^{-2/(p+1)})$ is also established to show that our method is optimal in the monotone setting. A version with restarting attains a global linear and local superlinear convergence rate for smooth and strongly monotone VIs. Moreover, our method can achieve a global rate of $O(\epsilon^{-2/p})$ for solving smooth and non-monotone VIs satisfying the Minty condition; moreover, the restarted version again attains a global linear and local superlinear convergence rate if the strong Minty condition holds.

Are intelligent machines really intelligent? Is the underlying philosophical concept of intelligence satisfactory for describing how the present systems work? Is understanding a necessary and sufficient condition for intelligence? If a machine could understand, should we attribute subjectivity to it? This paper addresses the problem of deciding whether the so-called "intelligent machines" are capable of understanding, instead of merely processing signs. It deals with the relationship between syntaxis and semantics. The main thesis concerns the inevitability of semantics for any discussion about the possibility of building conscious machines, condensed into the following two tenets: "If a machine is capable of understanding (in the strong sense), then it must be capable of combining rules and intuitions"; "If semantics cannot be reduced to syntaxis, then a machine cannot understand." Our conclusion states that it is not necessary to attribute understanding to a machine in order to explain its exhibited "intelligent" behavior; a merely syntactic and mechanistic approach to intelligence as a task-solving tool suffices to justify the range of operations that it can display in the current state of technological development.

It remains challenging to deploy existing risk-averse approaches to real-world applications. The reasons are multi-fold, including the lack of global optimality guarantee and the necessity of learning from long-term consecutive trajectories. Long-term consecutive trajectories are prone to involving visiting hazardous states, which is a major concern in the risk-averse setting. This paper proposes Short-Term VOlatility-controlled Policy Search (STOPS), a novel algorithm that solves risk-averse problems by learning from short-term trajectories instead of long-term trajectories. Short-term trajectories are more flexible to generate, and can avoid the danger of hazardous state visitations. By using an actor-critic scheme with an overparameterized two-layer neural network, our algorithm finds a globally optimal policy at a sublinear rate with proximal policy optimization and natural policy gradient, with effectiveness comparable to the state-of-the-art convergence rate of risk-neutral policy-search methods. The algorithm is evaluated on challenging Mujoco robot simulation tasks under the mean-variance evaluation metric. Both theoretical analysis and experimental results demonstrate a state-of-the-art level of STOPS' performance among existing risk-averse policy search methods.

The hypergraph Moore bound is an elegant statement that characterizes the extremal trade-off between the girth - the number of hyperedges in the smallest cycle or even cover (a subhypergraph with all degrees even) and size - the number of hyperedges in a hypergraph. For graphs (i.e., $2$-uniform hypergraphs), a bound tight up to the leading constant was proven in a classical work of Alon, Hoory and Linial [AHL02]. For hypergraphs of uniformity $k>2$, an appropriate generalization was conjectured by Feige [Fei08]. The conjecture was settled up to an additional $\log^{4k+1} n$ factor in the size in a recent work of Guruswami, Kothari and Manohar [GKM21]. Their argument relies on a connection between the existence of short even covers and the spectrum of a certain randomly signed Kikuchi matrix. Their analysis, especially for the case of odd $k$, is significantly complicated. In this work, we present a substantially simpler and shorter proof of the hypergraph Moore bound. Our key idea is the use of a new reweighted Kikuchi matrix and an edge deletion step that allows us to drop several involved steps in [GKM21]'s analysis such as combinatorial bucketing of rows of the Kikuchi matrix and the use of the Schudy-Sviridenko polynomial concentration. Our simpler proof also obtains tighter parameters: in particular, the argument gives a new proof of the classical Moore bound of [AHL02] with no loss (the proof in [GKM21] loses a $\log^3 n$ factor), and loses only a single logarithmic factor for all $k>2$-uniform hypergraphs. As in [GKM21], our ideas naturally extend to yield a simpler proof of the full trade-off for strongly refuting smoothed instances of constraint satisfaction problems with similarly improved parameters.

We study incentive designs for a class of stochastic Stackelberg games with one leader and a large number of (finite as well as infinite population of) followers. We investigate whether the leader can craft a strategy under a dynamic information structure that induces a desired behavior among the followers. For the finite population setting, under sufficient conditions, we show that there exist symmetric incentive strategies for the leader that attain approximately optimal performance from the leader's viewpoint and lead to an approximate symmetric (pure) Nash best response among the followers. Driving the follower population to infinity, we arrive at the interesting result that in this infinite-population regime the leader cannot design a smooth "finite-energy" incentive strategy, namely, a mean-field limit for such games is not well-defined. As a way around this, we introduce a class of stochastic Stackelberg games with a leader, a major follower, and a finite or infinite population of minor followers, where the leader provides an incentive only for the major follower, who in turn influences the rest of the followers through her strategy. For this class of problems, we are able to establish the existence of an incentive strategy with finitely many minor followers. We also show that if the leader's strategy with finitely many minor followers converges as their population size grows, then the limit defines an incentive strategy for the corresponding mean-field Stackelberg game. Examples of quadratic Gaussian games are provided to illustrate both positive and negative results. In addition, as a byproduct of our analysis, we establish existence of a randomized incentive strategy for the class mean-field Stackelberg games, which in turn provides an approximation for an incentive strategy of the corresponding finite population Stackelberg game.

The ergodic decomposition theorem is a cornerstone result of dynamical systems and ergodic theory. It states that every invariant measure on a dynamical system is a mixture of ergodic ones. Here we formulate and prove the theorem in terms of string diagrams, using the formalism of Markov categories. We recover the usual measure-theoretic statement by instantiating our result in the category of stochastic kernels. Along the way we give a conceptual treatment of several concepts in the theory of deterministic and stochastic dynamical systems. In particular, - ergodic measures appear very naturally as particular cones of deterministic morphisms (in the sense of Markov categories); - the invariant $\sigma$-algebra of a dynamical system can be seen as a colimit in the category of Markov kernels. In line with other uses of category theory, once the necessary structures are in place, our proof of the main theorem is much simpler than traditional approaches. In particular, it does not use any quantitative limiting arguments, and it does not rely on the cardinality of the group or monoid indexing the dynamics. We hope that this result paves the way for further applications of category theory to dynamical systems, ergodic theory, and information theory.

Boosting is one of the most significant developments in machine learning. This paper studies the rate of convergence of $L_2$Boosting, which is tailored for regression, in a high-dimensional setting. Moreover, we introduce so-called \textquotedblleft post-Boosting\textquotedblright. This is a post-selection estimator which applies ordinary least squares to the variables selected in the first stage by $L_2$Boosting. Another variant is \textquotedblleft Orthogonal Boosting\textquotedblright\ where after each step an orthogonal projection is conducted. We show that both post-$L_2$Boosting and the orthogonal boosting achieve the same rate of convergence as LASSO in a sparse, high-dimensional setting. We show that the rate of convergence of the classical $L_2$Boosting depends on the design matrix described by a sparse eigenvalue constant. To show the latter results, we derive new approximation results for the pure greedy algorithm, based on analyzing the revisiting behavior of $L_2$Boosting. We also introduce feasible rules for early stopping, which can be easily implemented and used in applied work. Our results also allow a direct comparison between LASSO and boosting which has been missing from the literature. Finally, we present simulation studies and applications to illustrate the relevance of our theoretical results and to provide insights into the practical aspects of boosting. In these simulation studies, post-$L_2$Boosting clearly outperforms LASSO.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

北京阿比特科技有限公司