亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate a second-order accurate time-stepping scheme for solving a time-fractional diffusion equation with a Caputo derivative of order~$\alpha \in (0,1)$. The basic idea of our scheme is based on local integration followed by linear interpolation. It reduces to the standard Crank--Nicolson scheme in the classical diffusion case, that is, as $\alpha\to 1$. Using a novel approach, we show that the proposed scheme is $\alpha$-robust and second-order accurate in the $L^2(L^2)$-norm, assuming a suitable time-graded mesh. For completeness, we use the Galerkin finite element method for the spatial discretization and discuss the error analysis under reasonable regularity assumptions on the given data. Some numerical results are presented at the end.

相關內容

We propose a high order numerical scheme for time-dependent first order Hamilton--Jacobi--Bellman equations. In particular we propose to combine a semi-Lagrangian scheme with a Central Weighted Non-Oscillatory reconstruction. We prove a convergence result in the case of state- and time-independent Hamiltonians. Numerical simulations are presented in space dimensions one and two, also for more general state- and time-dependent Hamiltonians, demonstrating superior performance in terms of CPU time gain compared with a semi-Lagrangian scheme coupled with Weighted Non-Oscillatory reconstructions.

We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.

Explicit time integration schemes coupled with Galerkin discretizations of time-dependent partial differential equations require solving a linear system with the mass matrix at each time step. For applications in structural dynamics, the solution of the linear system is frequently approximated through so-called mass lumping, which consists in replacing the mass matrix by some diagonal approximation. Mass lumping has been widely used in engineering practice for decades already and has a sound mathematical theory supporting it for finite element methods using the classical Lagrange basis. However, the theory for more general basis functions is still missing. Our paper partly addresses this shortcoming. Some special and practically relevant properties of lumped mass matrices are proved and we discuss how these properties naturally extend to banded and Kronecker product matrices whose structure allows to solve linear systems very efficiently. Our theoretical results are applied to isogeometric discretizations but are not restricted to them.

Numerical simulations of high energy-density experiments require equation of state (EOS) models that relate a material's thermodynamic state variables -- specifically pressure, volume/density, energy, and temperature. EOS models are typically constructed using a semi-empirical parametric methodology, which assumes a physics-informed functional form with many tunable parameters calibrated using experimental/simulation data. Since there are inherent uncertainties in the calibration data (parametric uncertainty) and the assumed functional EOS form (model uncertainty), it is essential to perform uncertainty quantification (UQ) to improve confidence in the EOS predictions. Model uncertainty is challenging for UQ studies since it requires exploring the space of all possible physically consistent functional forms. Thus, it is often neglected in favor of parametric uncertainty, which is easier to quantify without violating thermodynamic laws. This work presents a data-driven machine learning approach to constructing EOS models that naturally captures model uncertainty while satisfying the necessary thermodynamic consistency and stability constraints. We propose a novel framework based on physics-informed Gaussian process regression (GPR) that automatically captures total uncertainty in the EOS and can be jointly trained on both simulation and experimental data sources. A GPR model for the shock Hugoniot is derived and its uncertainties are quantified using the proposed framework. We apply the proposed model to learn the EOS for the diamond solid state of carbon, using both density functional theory data and experimental shock Hugoniot data to train the model and show that the prediction uncertainty reduces by considering the thermodynamic constraints.

Differential equation discovery, a machine learning subfield, is used to develop interpretable models, particularly in nature-related applications. By expertly incorporating the general parametric form of the equation of motion and appropriate differential terms, algorithms can autonomously uncover equations from data. This paper explores the prerequisites and tools for independent equation discovery without expert input, eliminating the need for equation form assumptions. We focus on addressing the challenge of assessing the adequacy of discovered equations when the correct equation is unknown, with the aim of providing insights for reliable equation discovery without prior knowledge of the equation form.

Learning unknown stochastic differential equations (SDEs) from observed data is a significant and challenging task with applications in various fields. Current approaches often use neural networks to represent drift and diffusion functions, and construct likelihood-based loss by approximating the transition density to train these networks. However, these methods often rely on one-step stochastic numerical schemes, necessitating data with sufficiently high time resolution. In this paper, we introduce novel approximations to the transition density of the parameterized SDE: a Gaussian density approximation inspired by the random perturbation theory of dynamical systems, and its extension, the dynamical Gaussian mixture approximation (DynGMA). Benefiting from the robust density approximation, our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift and diffusion functions and computing the invariant distribution from trajectory data. And it is capable of handling trajectory data with low time resolution and variable, even uncontrollable, time step sizes, such as data generated from Gillespie's stochastic simulations. We then conduct several experiments across various scenarios to verify the advantages and robustness of the proposed method.

This paper delves into a nonparametric estimation approach for the interaction function within diffusion-type particle system models. We introduce two estimation methods based upon an empirical risk minimization. Our study encompasses an analysis of the stochastic and approximation errors associated with both procedures, along with an examination of certain minimax lower bounds. In particular, we show that there is a natural metric under which the corresponding minimax estimation error of the interaction function converges to zero with parametric rate. This result is rather suprising given complexity of the underlying estimation problem and rather large classes of interaction functions for which the above parametric rate holds.

We introduce an algebraic concept of the frame for abstract conditional independence (CI) models, together with basic operations with respect to which such a frame should be closed: copying and marginalization. Three standard examples of such frames are (discrete) probabilistic CI structures, semi-graphoids and structural semi-graphoids. We concentrate on those frames which are closed under the operation of set-theoretical intersection because, for these, the respective families of CI models are lattices. This allows one to apply the results from lattice theory and formal concept analysis to describe such families in terms of implications among CI statements. The central concept of this paper is that of self-adhesivity defined in algebraic terms, which is a combinatorial reflection of the self-adhesivity concept studied earlier in context of polymatroids and information theory. The generalization also leads to a self-adhesivity operator defined on the hyper-level of CI frames. We answer some of the questions related to this approach and raise other open questions. The core of the paper is in computations. The combinatorial approach to computation might overcome some memory and space limitation of software packages based on polyhedral geometry, in particular, if SAT solvers are utilized. We characterize some basic CI families over 4 variables in terms of canonical implications among CI statements. We apply our method in information-theoretical context to the task of entropic region demarcation over 5 variables.

We extend generalized functional linear models under independence to a situation in which a functional covariate is related to a scalar response variable that exhibits spatial dependence. For estimation, we apply basis expansion and truncation for dimension reduction of the covariate process followed by a composite likelihood estimating equation to handle the spatial dependency. We develop asymptotic results for the proposed model under a repeating lattice asymptotic context, allowing us to construct a confidence interval for the spatial dependence parameter and a confidence band for the parameter function. A binary conditionals model is presented as a concrete illustration and is used in simulation studies to verify the applicability of the asymptotic inferential results.

Accurate triangulation of the domain plays a pivotal role in computing the numerical approximation of the differential operators. A good triangulation is the one which aids in reducing discretization errors. In a standard collocation technique, the smooth curved domain is typically triangulated with a mesh by taking points on the boundary to approximate them by polygons. However, such an approach often leads to geometrical errors which directly affect the accuracy of the numerical approximation. To restrict such geometrical errors, \textit{isoparametric}, \textit{subparametric}, and \textit{iso-geometric} methods were introduced which allow the approximation of the curved surfaces (or curved line segments). In this paper, we present an efficient finite element method to approximate the solution to the elliptic boundary value problem (BVP), which governs the response of an elastic solid containing a v-notch and inclusions. The algebraically nonlinear constitutive equation along with the balance of linear momentum reduces to second-order quasi-linear elliptic partial differential equation. Our approach allows us to represent the complex curved boundaries by smooth \textit{one-of-its-kind} point transformation. The main idea is to obtain higher-order shape functions which enable us to accurately compute the entries in the finite element matrices and vectors. A Picard-type linearization is utilized to handle the nonlinearities in the governing differential equation. The numerical results for the test cases show considerable improvement in the accuracy.

北京阿比特科技有限公司