亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we use the interaction inside adversarial perturbations to explain and boost the adversarial transferability. We discover and prove the negative correlation between the adversarial transferability and the interaction inside adversarial perturbations. The negative correlation is further verified through different DNNs with various inputs. Moreover, this negative correlation can be regarded as a unified perspective to understand current transferability-boosting methods. To this end, we prove that some classic methods of enhancing the transferability essentially decease interactions inside adversarial perturbations. Based on this, we propose to directly penalize interactions during the attacking process, which significantly improves the adversarial transferability.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 模型評估 · 優化器 · Learning · 泛函 ·
2024 年 1 月 22 日

In this paper, the problem of using one active unmanned aerial vehicle (UAV) and four passive UAVs to localize a 3D target UAV in real time is investigated. In the considered model, each passive UAV receives reflection signals from the target UAV, which are initially transmitted by the active UAV. The received reflection signals allow each passive UAV to estimate the signal transmission distance which will be transmitted to a base station (BS) for the estimation of the position of the target UAV. Due to the movement of the target UAV, each active/passive UAV must optimize its trajectory to continuously localize the target UAV. Meanwhile, since the accuracy of the distance estimation depends on the signal-to-noise ratio of the transmission signals, the active UAV must optimize its transmit power. This problem is formulated as an optimization problem whose goal is to jointly optimize the transmit power of the active UAV and trajectories of both active and passive UAVs so as to maximize the target UAV positioning accuracy. To solve this problem, a Z function decomposition based reinforcement learning (ZD-RL) method is proposed. Compared to value function decomposition based RL (VD-RL), the proposed method can find the probability distribution of the sum of future rewards to accurately estimate the expected value of the sum of future rewards thus finding better transmit power of the active UAV and trajectories for both active and passive UAVs and improving target UAV positioning accuracy. Simulation results show that the proposed ZD-RL method can reduce the positioning errors by up to 39.4% and 64.6%, compared to VD-RL and independent deep RL methods, respectively.

In this paper, we present a simultaneous target tracking and multi-user communications system realized by a full duplex holographic Multiple-Input Multiple-Output (MIMO) node equipped with Dynamic Metasurface Antennas (DMAs) at both its communication ends. Focusing on the near-field regime, we extend Fresnel's approximation to metasurfaces and devise a subspace tracking scheme with DMA-based hybrid Analog and Digital (A/D) reception as well as hybrid A/D transmission with a DMA for sum-rate maximization. The presented simulation results corroborate the efficiency of the proposed framework for various system parameters.

In this paper, we present an approach to automated solving of triangle ruler-and-compass construction problems using finite-domain constraint solvers. The constraint model is described in the MiniZinc modeling language, and is based on the automated planning. The main benefit of using general constraint solvers for such purpose, instead of developing dedicated tools, is that we can rely on the efficient search that is already implemented within the solver, enabling us to focus on geometric aspects of the problem. We may also use the solver's built-in optimization capabilities to search for the shortest possible constructions. We evaluate our approach on 74 solvable problems from the Wernick's list, and compare it to the dedicated triangle construction solver ArgoTriCS. The results show that our approach is comparable to dedicated tools, while it requires much less effort to implement. Also, our model often finds shorter constructions, thanks to the optimization capabilities offered by the constraint solvers.

In this paper, we study the type graph, namely, a bipartite graph induced by a joint type. We investigate the maximum edge density of induced bipartite subgraphs of this graph having a number of vertices on each side on an exponential scale in the length $n$ of the type. This can be seen as an isoperimetric problem. We provide asymptotically sharp bounds for the exponent of the maximum edge density as the length of the type goes to infinity. We also study the biclique rate region of the type graph, which is defined as the set of $(R_{1},R_{2})$ such that there exists a biclique of the type graph which has respectively $2^{nR_{1}}$ and $2^{nR_{2}}$ vertices on the two sides. We provide asymptotically sharp bounds for the biclique rate region as well. We then discuss the connections of these results to noninteractive simulation and hypercontractivity inequalities. Furthermore, as an application of our results, a new outer bound for the zero-error capacity region of the binary adder channel is provided, which improves the previously best known bound, due to Austrin, Kaski, Koivisto, and Nederlof. Our proofs in this paper are based on the method of types and linear algebra.

In this paper, we provide a theoretical analysis of the inductive biases in convolutional neural networks (CNNs). We start by examining the universality of CNNs, i.e., the ability to approximate any continuous functions. We prove that a depth of $\mathcal{O}(\log d)$ suffices for deep CNNs to achieve this universality, where $d$ in the input dimension. Additionally, we establish that learning sparse functions with CNNs requires only $\widetilde{\mathcal{O}}(\log^2d)$ samples, indicating that deep CNNs can efficiently capture {\em long-range} sparse correlations. These results are made possible through a novel combination of the multichanneling and downsampling when increasing the network depth. We also delve into the distinct roles of weight sharing and locality in CNNs. To this end, we compare the performance of CNNs, locally-connected networks (LCNs), and fully-connected networks (FCNs) on a simple regression task, where LCNs can be viewed as CNNs without weight sharing. On the one hand, we prove that LCNs require ${\Omega}(d)$ samples while CNNs need only $\widetilde{\mathcal{O}}(\log^2d)$ samples, highlighting the critical role of weight sharing. On the other hand, we prove that FCNs require $\Omega(d^2)$ samples, whereas LCNs need only $\widetilde{\mathcal{O}}(d)$ samples, underscoring the importance of locality. These provable separations quantify the difference between the two biases, and the major observation behind our proof is that weight sharing and locality break different symmetries in the learning process.

In Polaris, we introduced a cloud-native distributed query processor to perform analytics at scale. In this paper, we extend the underlying Polaris distributed computation framework, which can be thought of as a read-only transaction engine, to execute general transactions (including updates, deletes, inserts and bulk loads, in addition to queries) for Tier 1 warehousing workloads in a highly performant and predictable manner. We take advantage of the immutability of data files in log-structured data stores and build on SQL Server transaction management to deliver full transactional support with Snapshot Isolation semantics, including multi-table and multi-statement transactions. With the enhancements described in this paper, Polaris supports both query processing and transactions for T-SQL in Microsoft Fabric.

There has been considerable recent interest in estimating heterogeneous causal effects. In this paper, we introduce conditional average partial causal effects (CAPCE) to reveal the heterogeneity of causal effects with continuous treatment. We provide conditions for identifying CAPCE in an instrumental variable setting. We develop three families of CAPCE estimators: sieve, parametric, and reproducing kernel Hilbert space (RKHS)-based, and analyze their statistical properties. We illustrate the proposed CAPCE estimators on synthetic and real-world data.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司