亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A deep learning (DL)-enabled semantic communication (SemCom) has emerged as a 6G enabler while promising to minimize power usage, bandwidth consumption, and transmission delay by minimizing irrelevant information transmission. However, the benefits of such a semantic-centric design can be limited by radio frequency interference (RFI) that causes substantial semantic noise. The impact of semantic noise due to interference can be alleviated using an interference-resistant and robust (IR$^2$) SemCom design. Nevertheless, no such design exists yet. To shed light on this knowledge gap and stimulate fundamental research on IR$^2$ SemCom, the performance limits of a text SemCom system named DeepSC are studied in the presence of (multi-interferer) RFI. By introducing a principled probabilistic framework for SemCom, we show that DeepSC produces semantically irrelevant sentences as the power of (multi-interferer) RFI gets very large. We also derive DeepSC's practical limits and a lower bound on its outage probability under multi-interferer RFI. Toward a fundamental 6G design for an IR$^2$ SemCom, moreover, we propose a generic lifelong DL-based IR$^2$ SemCom system. Eventually, we corroborate the derived performance limits with Monte Carlo simulations and computer experiments, which also affirm the vulnerability of DeepSC and DL-enabled text SemCom to a wireless attack using RFI.

相關內容

The prevalent deployment of learning from human preferences through reinforcement learning (RLHF) relies on two important approximations: the first assumes that pairwise preferences can be substituted with pointwise rewards. The second assumes that a reward model trained on these pointwise rewards can generalize from collected data to out-of-distribution data sampled by the policy. Recently, Direct Preference Optimisation (DPO) has been proposed as an approach that bypasses the second approximation and learn directly a policy from collected data without the reward modelling stage. However, this method still heavily relies on the first approximation. In this paper we try to gain a deeper theoretical understanding of these practical algorithms. In particular we derive a new general objective called $\Psi$PO for learning from human preferences that is expressed in terms of pairwise preferences and therefore bypasses both approximations. This new general objective allows us to perform an in-depth analysis of the behavior of RLHF and DPO (as special cases of $\Psi$PO) and to identify their potential pitfalls. We then consider another special case for $\Psi$PO by setting $\Psi$ simply to Identity, for which we can derive an efficient optimisation procedure, prove performance guarantees and demonstrate its empirical superiority to DPO on some illustrative examples.

Thanks to the latest deep learning algorithms, silent speech interfaces (SSI) are now able to synthesize intelligible speech from articulatory movement data under certain conditions. However, the resulting models are rather speaker-specific, making a quick switch between users troublesome. Even for the same speaker, these models perform poorly cross-session, i.e. after dismounting and re-mounting the recording equipment. To aid quick speaker and session adaptation of ultrasound tongue imaging-based SSI models, we extend our deep networks with a spatial transformer network (STN) module, capable of performing an affine transformation on the input images. Although the STN part takes up only about 10% of the network, our experiments show that adapting just the STN module might allow to reduce MSE by 88% on the average, compared to retraining the whole network. The improvement is even larger (around 92%) when adapting the network to different recording sessions from the same speaker.

This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models without retrieving other information about users' local data. Secure aggregation generally contains two phases, namely key sharing phase and model aggregation phase. Due to the common effect of user dropouts in federated learning, the model aggregation phase should contain two rounds, where in the first round the users transmit masked models and, in the second round, according to the identity of surviving users after the first round, these surviving users transmit some further messages to help the server decrypt the sum of users' trained models. The objective of the considered information theoretic formulation is to characterize the capacity region of the communication rates in the two rounds from the users to the server in the model aggregation phase, assuming that key sharing has already been performed offline in prior. In this context, Zhao and Sun completely characterized the capacity region under the assumption that the keys can be arbitrary random variables. More recently, an additional constraint, known as "uncoded groupwise keys," has been introduced. This constraint entails the presence of multiple independent keys within the system, with each key being shared by precisely S users. The capacity region for the information-theoretic secure aggregation problem with uncoded groupwise keys was established in our recent work subject to the condition S > K - U, where K is the number of total users and U is the designed minimum number of surviving users. In this paper we fully characterize of the the capacity region for this problem by proposing a new converse bound and an achievable scheme.

Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems. However, POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid, which is often the case for physical systems. While recent online sampling-based POMDP algorithms that plan with observation likelihood weighting have shown practical effectiveness, a general theory characterizing the approximation error of the particle filtering techniques that these algorithms use has not previously been proposed. Our main contribution is bounding the error between any POMDP and its corresponding finite sample particle belief MDP (PB-MDP) approximation. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sampling-based MDP algorithm to a POMDP by solving the corresponding particle belief MDP, thereby extending the convergence guarantees of the MDP algorithm to the POMDP. Practically, this is implemented by using the particle filter belief transition model as the generative model for the MDP solver. While this requires access to the observation density model from the POMDP, it only increases the transition sampling complexity of the MDP solver by a factor of $\mathcal{O}(C)$, where $C$ is the number of particles. Thus, when combined with sparse sampling MDP algorithms, this approach can yield algorithms for POMDPs that have no direct theoretical dependence on the size of the state and observation spaces. In addition to our theoretical contribution, we perform five numerical experiments on benchmark POMDPs to demonstrate that a simple MDP algorithm adapted using PB-MDP approximation, Sparse-PFT, achieves performance competitive with other leading continuous observation POMDP solvers.

Deep learning-based fault diagnosis (FD) approaches require a large amount of training data, which are difficult to obtain since they are located across different entities. Federated learning (FL) enables multiple clients to collaboratively train a shared model with data privacy guaranteed. However, the domain discrepancy and data scarcity problems among clients deteriorate the performance of the global FL model. To tackle these issues, we propose a novel framework called representation encoding-based federated meta-learning (REFML) for few-shot FD. First, a novel training strategy based on representation encoding and meta-learning is developed. It harnesses the inherent heterogeneity among training clients, effectively transforming it into an advantage for out-of-distribution generalization on unseen working conditions or equipment types. Additionally, an adaptive interpolation method that calculates the optimal combination of local and global models as the initialization of local training is proposed. This helps to further utilize local information to mitigate the negative effects of domain discrepancy. As a result, high diagnostic accuracy can be achieved on unseen working conditions or equipment types with limited training data. Compared with the state-of-the-art methods, such as FedProx, the proposed REFML framework achieves an increase in accuracy by 2.17%-6.50% when tested on unseen working conditions of the same equipment type and 13.44%-18.33% when tested on totally unseen equipment types, respectively.

Large Language models (LLMs) possess the capability to engage In-context Learning (ICL) by leveraging a few demonstrations pertaining to a new downstream task as conditions. However, this particular learning paradigm suffers from high instability stemming from substantial variances induced by factors such as the input distribution of selected examples, their ordering, and prompt formats. In this work, we demonstrate that even when all these factors are held constant, the random selection of examples still results in high variance. Consequently, we aim to explore the informative ability of data examples by quantifying the Information Gain (IG) obtained in prediction after observing a given example candidate. Then we propose to sample those with maximum IG. Additionally, we identify the presence of template bias, which can lead to unfair evaluations of IG during the sampling process. To mitigate this bias, we introduce Calibration Before Sampling strategy. The experimental results illustrate that our proposed method can yield an average relative improvement of 14.3% across six classification tasks using three LLMs.

The globally convergent convexification numerical method is constructed for a Coefficient Inverse Problem for the Mean Field Games System. A coefficient characterizing the global interaction term is recovered from the single measurement data. In particular, a new Carleman estimate for the Volterra integral operator is proven, and it stronger than the previously known one. Numerical results demonstrate accurate reconstructions from noisy data.

Case-based reasoning (CBR) as a methodology for problem-solving can use any appropriate computational technique. This position paper argues that CBR researchers have somewhat overlooked recent developments in deep learning and large language models (LLMs). The underlying technical developments that have enabled the recent breakthroughs in AI have strong synergies with CBR and could be used to provide a persistent memory for LLMs to make progress towards Artificial General Intelligence.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司