Time series widely exists in real-world applications and many deep learning models have performed well on it. Current research has shown the importance of learning strategy for models, suggesting that the benefit is the order and size of learning samples. However, no effective strategy has been proposed for time series due to its abstract and dynamic construction. Meanwhile, the existing one-shot tasks and continuous tasks for time series necessitate distinct learning processes and mechanisms. No all-purpose approach has been suggested. In this work, we propose a novel Curricular and CyclicaL loss (CRUCIAL) to learn time series for the first time. It is model- and task-agnostic and can be plugged on top of the original loss with no extra procedure. CRUCIAL has two characteristics: It can arrange an easy-to-hard learning order by dynamically determining the sample contribution and modulating the loss amplitude; It can manage a cyclically changed dataset and achieve an adaptive cycle by correlating the loss distribution and the selection probability. We prove that compared with monotonous size, cyclical size can reduce expected error. Experiments on 3 kinds of tasks and 5 real-world datasets show the benefits of CRUCIAL for most deep learning models when learning time series.
The recent rapid progress in (self) supervised learning models is in large part predicted by empirical scaling laws: a model's performance scales proportionally to its size. Analogous scaling laws remain elusive for reinforcement learning domains, however, where increasing the parameter count of a model often hurts its final performance. In this paper, we demonstrate that incorporating Mixture-of-Expert (MoE) modules, and in particular Soft MoEs (Puigcerver et al., 2023), into value-based networks results in more parameter-scalable models, evidenced by substantial performance increases across a variety of training regimes and model sizes. This work thus provides strong empirical evidence towards developing scaling laws for reinforcement learning.
Motivated by modern applications such as computerized adaptive testing, sequential rank aggregation, and heterogeneous data source selection, we study the problem of active sequential estimation, which involves adaptively selecting experiments for sequentially collected data. The goal is to design experiment selection rules for more accurate model estimation. Greedy information-based experiment selection methods, optimizing the information gain for one-step ahead, have been employed in practice thanks to their computational convenience, flexibility to context or task changes, and broad applicability. However, statistical analysis is restricted to one-dimensional cases due to the problem's combinatorial nature and the seemingly limited capacity of greedy algorithms, leaving the multidimensional problem open. In this study, we close the gap for multidimensional problems. In particular, we propose adopting a class of greedy experiment selection methods and provide statistical analysis for the maximum likelihood estimator following these selection rules. This class encompasses both existing methods and introduces new methods with improved numerical efficiency. We prove that these methods produce consistent and asymptotically normal estimators. Additionally, within a decision theory framework, we establish that the proposed methods achieve asymptotic optimality when the risk measure aligns with the selection rule. We also conduct extensive numerical studies on both simulated and real data to illustrate the efficacy of the proposed methods. From a technical perspective, we devise new analytical tools to address theoretical challenges. These analytical tools are of independent theoretical interest and may be reused in related problems involving stochastic approximation and sequential designs.
Efficient inference in high-dimensional models remains a central challenge in machine learning. This paper introduces the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, a fusion of the Ensemble Kalman filter and Gaussian belief propagation (GaBP) methods. GEnBP updates ensembles by passing low-rank local messages in a graphical model structure. This combination inherits favourable qualities from each method. Ensemble techniques allow GEnBP to handle high-dimensional states, parameters and intricate, noisy, black-box generation processes. The use of local messages in a graphical model structure ensures that the approach is suited to distributed computing and can efficiently handle complex dependence structures. GEnBP is particularly advantageous when the ensemble size is considerably smaller than the inference dimension. This scenario often arises in fields such as spatiotemporal modelling, image processing and physical model inversion. GEnBP can be applied to general problem structures, including jointly learning system parameters, observation parameters, and latent state variables.
We propose an optimization framework to perform resource allocation in virtual sensor networks. Sensor network virtualization is a promising paradigm to improve flexibility of wireless sensor networks which allows to dynamically assign physical resources to multiple stakeholder applications. The proposed optimization framework aims at maximizing the total number of applications which can share a common physical network, while accounting for the distinguishing characteristics and limitations of the wireless sensor environment (limited storage, limited processing power, limited bandwidth, tight energy consumption requirements). The proposed framework is finally applied to realistic network topologies to assess the gain involved in letting multiple applications share a common physical network with respect to one-application, one-network vertical design approaches.
The article provides a comprehensive overview of using quadratic polynomials in Python for modeling and analyzing data. It starts by explaining the basic concept of a quadratic polynomial, its general form, and its significance in capturing the curvature in data indicative of natural phenomena. The paper highlights key features of quadratic polynomials, their applications in regression analysis, and the process of fitting these polynomials to data using Python's `numpy` and `matplotlib` libraries. It also discusses the calculation of the coefficient of determination (R-squared) to quantify the fit of the polynomial model. Practical examples, including Python scripts, are provided to demonstrate how to apply these concepts in data analysis. The document serves as a bridge between theoretical knowledge and applied analytics, aiding in understanding and communicating data patterns.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.