亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spatially inhomogeneous functions, which may be smooth in some regions and rough in other regions, are modelled naturally in a Bayesian manner using so-called Besov priors which are given by random wavelet expansions with Laplace-distributed coefficients. This paper studies theoretical guarantees for such prior measures - specifically, we examine their frequentist posterior contraction rates in the setting of non-linear inverse problems with Gaussian white noise. Our results are first derived under a general local Lipschitz assumption on the forward map. We then verify the assumption for two non-linear inverse problems arising from elliptic partial differential equations, the Darcy flow model from geophysics as well as a model for the Schr\"odinger equation appearing in tomography. In the course of the proofs, we also obtain novel concentration inequalities for penalized least squares estimators with $\ell^1$ wavelet penalty, which have a natural interpretation as maximum a posteriori (MAP) estimators. The true parameter is assumed to belong to some spatially inhomogeneous Besov class $B^{\alpha}_{11}$, $\alpha>0$. In a setting with direct observations, we complement these upper bounds with a lower bound on the rate of contraction for arbitrary Gaussian priors. An immediate consequence of our results is that while Laplace priors can achieve minimax-optimal rates over $B^{\alpha}_{11}$-classes, Gaussian priors are limited to a (by a polynomial factor) slower contraction rate. This gives information-theoretical justification for the intuition that Laplace priors are more compatible with $\ell^1$ regularity structure in the underlying parameter.

相關內容

In this paper, we develop an approach of global sensitivity analysis for compartmental models based on continuous-time Markov chains. We propose to measure the sensitivity of quantities of interest by representing the Markov chain as a deterministic function of the uncertain parameters and a random variable with known distribution modeling intrinsic randomness. This representation is exact and does not rely on meta-modeling. An application to a SARS-CoV-2 epidemic model is included to illustrate the practical impact of our approach.

In this paper, we investigate the problem of computing Bayesian estimators using Langevin Monte-Carlo type approximation. The novelty of this paper is to consider together the statistical and numerical counterparts (in a general log-concave setting). More precisely, we address the following question: given $n$ observations in $\mathbb{R}^q$ distributed under an unknown probability $\mathbb{P}_{\theta^\star}$ with $\theta^\star \in \mathbb{R}^d$ , what is the optimal numerical strategy and its cost for the approximation of $\theta^\star$ with the Bayesian posterior mean? To answer this question, we establish some quantitative statistical bounds related to the underlying Poincar\'e constant of the model and establish new results about the numerical approximation of Gibbs measures by Cesaro averages of Euler schemes of (over-damped) Langevin diffusions. These last results include in particular some quantitative controls in the weakly convex case based on new bounds on the solution of the related Poisson equation of the diffusion.

This paper presents algorithms for local inversion of maps and shows how several important computational problems such as cryptanalysis of symmetric encryption algorithms, RSA algorithm and solving the elliptic curve discrete log problem (ECDLP) can be addressed as local inversion problems. The methodology is termed as the \emph{Local Inversion Attack}. It utilizes the concept of \emph{Linear Complexity} (LC) of a recurrence sequence generated by the map defined by the cryptanalysis problem and the given data. It is shown that when the LC of the recurrence is bounded by a bound of polynomial order in the bit length of the input to the map, the local inversion can be accomplished in polynomial time. Hence an incomplete local inversion algorithm which searches a solution within a specified bound on computation can estimate the density of weak cases of cryptanalysis defined by such data causing low LC. Such cases can happen accidentally but cannot be avoided in practice and are fatal insecurity flaws of cryptographic primitives which are wrongly assumed to be secure on the basis of exponential average case complexity. An incomplete algorithm is proposed for solving problems such as key recovery of symmetric encryption algorithms, decryption of RSA ciphertext without factoring the modulus, decrypting any ciphertext of RSA given one plaintext ciphertext pair created with same private key in chosen ciphertext attack and solving the discrete logarithm on elliptic curves over finite fields (ECDLP) as local inversion problems. It is shown that when the LCs of the respective recurrences for given data are small, solutions of these problems are possible in practically feasible time and memory resources.

The use of Cauchy Markov random field priors in statistical inverse problems can potentially lead to posterior distributions which are non-Gaussian, high-dimensional, multimodal and heavy-tailed. In order to use such priors successfully, sophisticated optimization and Markov chain Monte Carlo (MCMC) methods are usually required. In this paper, our focus is largely on reviewing recently developed Cauchy difference priors, while introducing interesting new variants, whilst providing a comparison. We firstly propose a one-dimensional second order Cauchy difference prior, and construct new first and second order two-dimensional isotropic Cauchy difference priors. Another new Cauchy prior is based on the stochastic partial differential equation approach, derived from Mat\'{e}rn type Gaussian presentation. The comparison also includes Cauchy sheets. Our numerical computations are based on both maximum a posteriori and conditional mean estimation.We exploit state-of-the-art MCMC methodologies such as Metropolis-within-Gibbs, Repelling-Attracting Metropolis, and No-U-Turn sampler variant of Hamiltonian Monte Carlo. We demonstrate the models and methods constructed for one-dimensional and two-dimensional deconvolution problems. Thorough MCMC statistics are provided for all test cases, including potential scale reduction factors.

Benign overfitting demonstrates that overparameterized models can perform well on test data while fitting noisy training data. However, it only considers the final min-norm solution in linear regression, which ignores the algorithm information and the corresponding training procedure. In this paper, we generalize the idea of benign overfitting to the whole training trajectory instead of the min-norm solution and derive a time-variant bound based on the trajectory analysis. Starting from the time-variant bound, we further derive a time interval that suffices to guarantee a consistent generalization error for a given feature covariance. Unlike existing approaches, the newly proposed generalization bound is characterized by a time-variant effective dimension of feature covariance. By introducing the time factor, we relax the strict assumption on the feature covariance matrix required in previous benign overfitting under the regimes of overparameterized linear regression with gradient descent. This paper extends the scope of benign overfitting, and experiment results indicate that the proposed bound accords better with empirical evidence.

We construct a new class of efficient Monte Carlo methods based on continuous-time piecewise deterministic Markov processes (PDMPs) suitable for inference in high dimensional sparse models, i.e. models for which there is prior knowledge that many coordinates are likely to be exactly $0$. This is achieved with the fairly simple idea of endowing existing PDMP samplers with 'sticky' coordinate axes, coordinate planes etc. Upon hitting those subspaces, an event is triggered during which the process sticks to the subspace, this way spending some time in a sub-model. This results in non-reversible jumps between different (sub-)models. While we show that PDMP samplers in general can be made sticky, we mainly focus on the Zig-Zag sampler. The computational efficiency of our method (and implementation) is established through numerical experiments where both the sample size and the dimension of the parameter space are large.

This paper studies the consistency and statistical inference of simulated Ising models in the high dimensional background. Our estimators are based on the Markov chain Monte Carlo maximum likelihood estimation (MCMC-MLE) method penalized by the Elastic-net. Under mild conditions that ensure a specific convergence rate of MCMC method, the $\ell_{1}$ consistency of Elastic-net-penalized MCMC-MLE is proved. We further propose a decorrelated score test based on the decorrelated score function and prove the asymptotic normality of the score function without the influence of many nuisance parameters under the assumption that accelerates the convergence of the MCMC method. The one-step estimator for a single parameter of interest is purposed by linearizing the decorrelated score function to solve its root, as well as its normality and confidence interval for the true value, therefore, be established. Finally, we use different algorithms to control the false discovery rate (FDR) via traditional p-values and novel e-values.

We study full Bayesian procedures for high-dimensional linear regression. We adopt data-dependent empirical priors introduced in [1]. In their paper, these priors have nice posterior contraction properties and are easy to compute. Our paper extend their theoretical results to the case of unknown error variance . Under proper sparsity assumption, we achieve model selection consistency, posterior contraction rates as well as Bernstein von-Mises theorem by analyzing multivariate t-distribution.

This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司