Egocentric, multi-modal data as available on future augmented reality (AR) devices provides unique challenges and opportunities for machine perception. These future devices will need to be all-day wearable in a socially acceptable form-factor to support always available, context-aware and personalized AI applications. Our team at Meta Reality Labs Research built the Aria device, an egocentric, multi-modal data recording and streaming device with the goal to foster and accelerate research in this area. In this paper, we describe the Aria device hardware including its sensor configuration and the corresponding software tools that enable recording and processing of such data.
A critical concern within the realm of visible light communications (VLC) pertains to enhancing system data rate, particularly in scenarios where the direct line-of-sight (LoS) connection is obstructed by obstacles. The deployment of meta-surface-based simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) has emerged to combat challenging LoS blockage scenarios and to provide 360 coverage in radio-frequency wireless systems. Recently, the concept of optical simultaneous transmission and reflection reconfigurable intelligent surface (OSTAR-RIS) has been promoted for VLC systems. This work is dedicated to studying the performance of OSTAR-RIS in detail and unveiling the VLC system performance gain under such technology. Specifically, we propose a novel multi-user indoor VLC system that is assisted by OSTAR-RIS. To improve the sum rate performance of the proposed system, both power-domain non-orthogonal multiple access (NOMA) and rate splitting multiple access (RSMA) are investigated in this work. To realize this, a sum rate maximization problem that jointly optimizes the roll and yaw angles of the reflector elements as well as the refractive index of the refractor elements in OSTAR-RIS is formulated, solved, and evaluated. The maximization problem takes into account practical considerations, such as the presence of non-users (i.e., blockers) and the orientation of the recipient's device. The sine-cosine meta-heuristic algorithm is employed to get the optimal solution of the formulated non-convex optimization problem. Moreover, the study delves into the sum energy efficiency optimization of the proposed system. Simulation results indicate that the proposed OSTAR-RIS RSMA-aided VLC system outperforms the OSTAR-RIS NOMA-based VLC system in terms of both the sum rate and the sum energy efficiency.
The theory underlying robust distributed learning algorithms, designed to resist adversarial machines, matches empirical observations when data is homogeneous. Under data heterogeneity however, which is the norm in practical scenarios, established lower bounds on the learning error are essentially vacuous and greatly mismatch empirical observations. This is because the heterogeneity model considered is too restrictive and does not cover basic learning tasks such as least-squares regression. We consider in this paper a more realistic heterogeneity model, namely (G,B)-gradient dissimilarity, and show that it covers a larger class of learning problems than existing theory. Notably, we show that the breakdown point under heterogeneity is lower than the classical fraction 1/2. We also prove a new lower bound on the learning error of any distributed learning algorithm. We derive a matching upper bound for a robust variant of distributed gradient descent, and empirically show that our analysis reduces the gap between theory and practice.
The constant growth of DNNs makes them challenging to implement and run efficiently on traditional compute-centric architectures. Some accelerators have attempted to add more compute units and on-chip buffers to solve the memory wall problem without much success, and sometimes even worsening the issue since more compute units also require higher memory bandwidth. Prior works have proposed the design of memory-centric architectures based on the Near-Data Processing (NDP) paradigm. NDP seeks to break the memory wall by moving the computations closer to the memory hierarchy, reducing the data movements and their cost as much as possible. The 3D-stacked memory is especially appealing for DNN accelerators due to its high-density/low-energy storage and near-memory computation capabilities to perform the DNN operations massively in parallel. However, memory accesses remain as the main bottleneck for running modern DNNs efficiently. To improve the efficiency of DNN inference we present QeiHaN, a hardware accelerator that implements a 3D-stacked memory-centric weight storage scheme to take advantage of a logarithmic quantization of activations. In particular, since activations of FC and CONV layers of modern DNNs are commonly represented as powers of two with negative exponents, QeiHaN performs an implicit in-memory bit-shifting of the DNN weights to reduce memory activity. Only the meaningful bits of the weights required for the bit-shift operation are accessed. Overall, QeiHaN reduces memory accesses by 25\% compared to a standard memory organization. We evaluate QeiHaN on a popular set of DNNs. On average, QeiHaN provides $4.3x$ speedup and $3.5x$ energy savings over a Neurocube-like accelerator.
We explore the idea of aligning an AI assistant by inverting a model of users' (unknown) preferences from observed interactions. To validate our proposal, we run proof-of-concept simulations in the economic ultimatum game, formalizing user preferences as policies that guide the actions of simulated players. We find that the AI assistant accurately aligns its behavior to match standard policies from the economic literature (e.g., selfish, altruistic). However, the assistant's learned policies lack robustness and exhibit limited generalization in an out-of-distribution setting when confronted with a currency (e.g., grams of medicine) that was not included in the assistant's training distribution. Additionally, we find that when there is inconsistency in the relationship between language use and an unknown policy (e.g., an altruistic policy combined with rude language), the assistant's learning of the policy is slowed. Overall, our preliminary results suggest that developing simulation frameworks in which AI assistants need to infer preferences from diverse users can provide a valuable approach for studying practical alignment questions.
At modern warehouses, mobile robots transport packages and drop them into collection bins/chutes based on shipping destinations grouped by, e.g., the ZIP code. System throughput, measured as the number of packages sorted per unit of time, determines the efficiency of the warehouse. This research develops a scalable, high-throughput multi-robot parcel sorting solution, decomposing the task into two related processes, bin assignment and offline/online multi-robot path planning, and optimizing both. Bin assignment matches collection bins with package types to minimize traveling costs. Subsequently, robots are assigned to pick up and drop packages into assigned bins. Multiple highly effective bin assignment algorithms are proposed that can work with an arbitrary planning algorithm. We propose a decentralized path planning routine using only local information to route the robots over a carefully constructed directed road network for multi-robot path planning. Our decentralized planner, provably probabilistically deadlock-free, consistently delivers near-optimal results on par with some top-performing centralized planners while significantly reducing computation times by orders of magnitude. Extensive simulations show that our overall framework delivers promising performances.
Safe deployment of time-series classifiers for real-world applications relies on the ability to detect the data which is not generated from the same distribution as training data. This task is referred to as out-of-distribution (OOD) detection. We consider the novel problem of OOD detection for the time-series domain. We discuss the unique challenges posed by time-series data and explain why prior methods from the image domain will perform poorly. Motivated by these challenges, this paper proposes a novel {\em Seasonal Ratio Scoring (SRS)} approach. SRS consists of three key algorithmic steps. First, each input is decomposed into class-wise semantic component and remainder. Second, this decomposition is employed to estimate the class-wise conditional likelihoods of the input and remainder using deep generative models. The seasonal ratio score is computed from these estimates. Third, a threshold interval is identified from the in-distribution data to detect OOD examples. Experiments on diverse real-world benchmarks demonstrate that the SRS method is well-suited for time-series OOD detection when compared to baseline methods. Open-source code for SRS method is provided at //github.com/tahabelkhouja/SRS
Due to the limited availability of data, existing few-shot learning methods trained from scratch fail to achieve satisfactory performance. In contrast, large-scale pre-trained models such as CLIP demonstrate remarkable few-shot and zero-shot capabilities. To enhance the performance of pre-trained models for downstream tasks, fine-tuning the model on downstream data is frequently necessary. However, fine-tuning the pre-trained model leads to a decrease in its generalizability in the presence of distribution shift, while the limited number of samples in few-shot learning makes the model highly susceptible to overfitting. Consequently, existing methods for fine-tuning few-shot learning primarily focus on fine-tuning the model's classification head or introducing additional structure. In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align). Our method aims to bolster the model's generalizability by preserving the consistency of spurious features across the fine-tuning process. Extensive experimental results validate the efficacy of our approach for both ID and OOD tasks. Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements. Our code can be found in //github.com/skingorz/FD-Align.
Robotic collectives for military and disaster response applications require coalition formation algorithms to partition robots into appropriate task teams. Collectives' missions will often incorporate tasks that require multiple high-level robot behaviors or services, which coalition formation must accommodate. The highly dynamic and unstructured application domains also necessitate that coalition formation algorithms produce near optimal solutions (i.e., >95% utility) in near real-time (i.e., <5 minutes) with very large collectives (i.e., hundreds of robots). No previous coalition formation algorithm satisfies these requirements. An initial evaluation found that traditional auction-based algorithms' runtimes are too long, even though the centralized simulator incorporated ideal conditions unlikely to occur in real-world deployments (i.e., synchronization across robots and perfect, instantaneous communication). The hedonic game-based GRAPE algorithm can produce solutions in near real-time, but cannot be applied to multiple service collectives. This manuscript integrates GRAPE and a services model, producing GRAPE-S and Pair-GRAPE-S. These algorithms and two auction baselines were evaluated using a centralized simulator with up to 1000 robots, and via the largest distributed coalition formation simulated evaluation to date, with up to 500 robots. The evaluations demonstrate that auctions transfer poorly to distributed collectives, resulting in excessive runtimes and low utility solutions. GRAPE-S satisfies the target domains' coalition formation requirements, producing near optimal solutions in near real-time, and Pair-GRAPE-S more than satisfies the domain requirements, producing optimal solutions in near real-time. GRAPE-S and Pair-GRAPE-S are the first algorithms demonstrated to support near real-time coalition formation for very large, distributed collectives with multiple services.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.