亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The back-end module of Distributed Collaborative Simultaneous Localization and Mapping (DCSLAM) requires solving a nonlinear Pose Graph Optimization (PGO) under a distributed setting, also known as SE(d)-synchronization. Most existing distributed graph optimization algorithms employ a simple sequential partitioning scheme, which may result in unbalanced subgraph dimensions due to the different geographic locations of each robot, and hence imposes extra communication load. Moreover, the performance of current Riemannian optimization algorithms can be further accelerated. In this letter, we propose a novel distributed pose graph optimization algorithm combining multi-level partitioning with an accelerated Riemannian optimization method. Firstly, we employ the multi-level graph partitioning algorithm to preprocess the naive pose graph to formulate a balanced optimization problem. In addition, inspired by the accelerated coordinate descent method, we devise an Improved Riemannian Block Coordinate Descent (IRBCD) algorithm and the critical point obtained is globally optimal. Finally, we evaluate the effects of four common graph partitioning approaches on the correlation of the inter-subgraphs, and discover that the Highest scheme has the best partitioning performance. Also, we implement simulations to quantitatively demonstrate that our proposed algorithm outperforms the state-of-the-art distributed pose graph optimization protocols.

相關內容

We present X-SLAM, a real-time dense differentiable SLAM system that leverages the complex-step finite difference (CSFD) method for efficient calculation of numerical derivatives, bypassing the need for a large-scale computational graph. The key to our approach is treating the SLAM process as a differentiable function, enabling the calculation of the derivatives of important SLAM parameters through Taylor series expansion within the complex domain. Our system allows for the real-time calculation of not just the gradient, but also higher-order differentiation. This facilitates the use of high-order optimizers to achieve better accuracy and faster convergence. Building on X-SLAM, we implemented end-to-end optimization frameworks for two important tasks: camera relocalization in wide outdoor scenes and active robotic scanning in complex indoor environments. Comprehensive evaluations on public benchmarks and intricate real scenes underscore the improvements in the accuracy of camera relocalization and the efficiency of robotic navigation achieved through our task-aware optimization. The code and data are available at //gapszju.github.io/X-SLAM.

We consider a missing data problem in the context of automatic segmentation methods for Magnetic Resonance Imaging (MRI) brain scans. Usually, automated MRI scan segmentation is based on multiple scans (e.g., T1-weighted, T2-weighted, T1CE, FLAIR). However, quite often a scan is blurry, missing or otherwise unusable. We investigate the question whether a missing scan can be synthesized. We exemplify that this is in principle possible by synthesizing a T2-weighted scan from a given T1-weighted scan. Our first aim is to compute a picture that resembles the missing scan closely, measured by average mean squared error (MSE). We develop/use several methods for this, including a random baseline approach, a clustering-based method and pixel-to-pixel translation method by Isola et al. (Pix2Pix) which is based on conditional GANs. The lowest MSE is achieved by our clustering-based method. Our second aim is to compare the methods with respect to the effect that using the synthesized scan has on the segmentation process. For this, we use a DeepMedic model trained with the four input scan modalities named above. We replace the T2-weighted scan by the synthesized picture and evaluate the segmentations with respect to the tumor identification, using Dice scores as numerical evaluation. The evaluation shows that the segmentation works well with synthesized scans (in particular, with Pix2Pix methods) in many cases.

This paper presents an efficient finite element iterative method for solving a nonuniform size-modified Poisson-Nernst-Planck ion channel (SMPNPIC) model, along with a SMPNPIC program package that works for an ion channel protein with a three-dimensional crystallographic structure and an ionic solvent with multiple ionic species. In particular, the SMPNPIC model is constructed and then reformulated by novel mathematical techniques so that each iteration of the method only involves linear boundary value problems and nonlinear algebraic systems, circumventing the numerical difficulties caused by the strong nonlinearities, strong asymmetries, and strong differential equation coupling of the SMPNPIC model. To further improve the method's efficiency, an efficient modified Newton iterative method is adapted to the numerical solution of each related nonlinear algebraic system. Numerical results for a voltage-dependent anion channel (VDAC) and a mixture solution of four ionic species demonstrate the method's convergence, the package's high performance, and the importance of considering nonuniform ion size effects. They also partially validate the SMPNPIC model by the anion selectivity property of VDAC.

Context: The rapid evolution of Large Language Models (LLMs) has sparked significant interest in leveraging their capabilities for automating code review processes. Prior studies often focus on developing LLMs for code review automation, yet require expensive resources, which is infeasible for organizations with limited budgets and resources. Thus, fine-tuning and prompt engineering are the two common approaches to leveraging LLMs for code review automation. Objective: We aim to investigate the performance of LLMs-based code review automation based on two contexts, i.e., when LLMs are leveraged by fine-tuning and prompting. Fine-tuning involves training the model on a specific code review dataset, while prompting involves providing explicit instructions to guide the model's generation process without requiring a specific code review dataset. Method: We leverage model fine-tuning and inference techniques (i.e., zero-shot learning, few-shot learning and persona) on LLMs-based code review automation. In total, we investigate 12 variations of two LLMs-based code review automation (i.e., GPT- 3.5 and Magicoder), and compare them with the Guo et al.'s approach and three existing code review automation approaches. Results: The fine-tuning of GPT 3.5 with zero-shot learning helps GPT-3.5 to achieve 73.17% -74.23% higher EM than the Guo et al.'s approach. In addition, when GPT-3.5 is not fine-tuned, GPT-3.5 with few-shot learning achieves 46.38% - 659.09% higher EM than GPT-3.5 with zero-shot learning. Conclusions: Based on our results, we recommend that (1) LLMs for code review automation should be fine-tuned to achieve the highest performance; and (2) when data is not sufficient for model fine-tuning (e.g., a cold-start problem), few-shot learning without a persona should be used for LLMs for code review automation.

The alignments of reasoning abilities between smaller and larger Language Models are largely conducted via Supervised Fine-Tuning (SFT) using demonstrations generated from robust Large Language Models (LLMs). Although these approaches deliver more performant models, they do not show sufficiently strong generalization ability as the training only relies on the provided demonstrations. In this paper, we propose the Self-refine Instruction-tuning method that elicits Smaller Language Models to self-refine their abilities. Our approach is based on a two-stage process, where reasoning abilities are first transferred between LLMs and Small Language Models (SLMs) via Instruction-tuning on demonstrations provided by LLMs, and then the instructed models Self-refine their abilities through preference optimization strategies. In particular, the second phase operates refinement heuristics based on the Direct Preference Optimization algorithm, where the SLMs are elicited to deliver a series of reasoning paths by automatically sampling the generated responses and providing rewards using ground truths from the LLMs. Results obtained on commonsense and math reasoning tasks show that this approach significantly outperforms Instruction-tuning in both in-domain and out-domain scenarios, aligning the reasoning abilities of Smaller and Larger Language Models.

We introduce AdaMoLE, a novel method for fine-tuning large language models (LLMs) through an Adaptive Mixture of Low-Rank Adaptation (LoRA) Experts. Moving beyond conventional methods that employ a static top-k strategy for activating experts, AdaMoLE dynamically adjusts the activation threshold using a dedicated threshold network, adaptively responding to the varying complexities of different tasks. By replacing a single LoRA in a layer with multiple LoRA experts and integrating a gating function with the threshold mechanism, AdaMoLE effectively selects and activates the most appropriate experts based on the input context. Our extensive evaluations across a variety of commonsense reasoning and natural language processing tasks show that AdaMoLE exceeds baseline performance. This enhancement highlights the advantages of AdaMoLE's adaptive selection of LoRA experts, improving model effectiveness without a corresponding increase in the expert count. The experimental validation not only confirms AdaMoLE as a robust approach for enhancing LLMs but also suggests valuable directions for future research in adaptive expert selection mechanisms, potentially broadening the scope for optimizing model performance across diverse language processing tasks.

Temporal Knowledge Graph (TKG) reasoning often involves completing missing factual elements along the timeline. Although existing methods can learn good embeddings for each factual element in quadruples by integrating temporal information, they often fail to infer the evolution of temporal facts. This is mainly because of (1) insufficiently exploring the internal structure and semantic relationships within individual quadruples and (2) inadequately learning a unified representation of the contextual and temporal correlations among different quadruples. To overcome these limitations, we propose a novel Transformer-based reasoning model (dubbed ECEformer) for TKG to learn the Evolutionary Chain of Events (ECE). Specifically, we unfold the neighborhood subgraph of an entity node in chronological order, forming an evolutionary chain of events as the input for our model. Subsequently, we utilize a Transformer encoder to learn the embeddings of intra-quadruples for ECE. We then craft a mixed-context reasoning module based on the multi-layer perceptron (MLP) to learn the unified representations of inter-quadruples for ECE while accomplishing temporal knowledge reasoning. In addition, to enhance the timeliness of the events, we devise an additional time prediction task to complete effective temporal information within the learned unified representation. Extensive experiments on six benchmark datasets verify the state-of-the-art performance and the effectiveness of our method.

Nowadays, a majority of System-on-Chips (SoCs) make use of Intellectual Property (IP) in order to shorten development cycles. When such IPs are developed, one of the main focuses lies in the high configurability of the design. This flexibility on the design side introduces the challenge of covering a huge state space of IP configurations on the verification side to ensure the functional correctness under every possible parameter setting. The vast number of possibilities does not allow a brute-force approach, and therefore, only a selected number of settings based on typical and extreme assumptions are usually verified. Especially in automotive applications, which need to follow the ISO 26262 functional safety standard, the requirement of covering all significant variants needs to be fulfilled in any case. State-of-the-Art existing verification techniques such as simulation-based verification and formal verification have challenges such as time-space explosion and state-space explosion respectively and therefore, lack behind in verifying highly configurable digital designs efficiently. This paper is focused on a semi-formal verification methodology for efficient configuration coverage of highly configurable digital designs. The methodology focuses on reduced runtime based on simulative and formal methods that allow high configuration coverage. The paper also presents the results when the developed methodology was applied on a highly configurable microprocessor IP and discusses the gained benefits.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司