亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diffusion Models (DMs) have achieved great success in image generation and other fields. By fine sampling through the trajectory defined by the SDE/ODE solver based on a well-trained score model, DMs can generate remarkable high-quality results. However, this precise sampling often requires multiple steps and is computationally demanding. To address this problem, instance-based distillation methods have been proposed to distill a one-step generator from a DM by having a simpler student model mimic a more complex teacher model. Yet, our research reveals an inherent limitations in these methods: the teacher model, with more steps and more parameters, occupies different local minima compared to the student model, leading to suboptimal performance when the student model attempts to replicate the teacher. To avoid this problem, we introduce a novel distributional distillation method, which uses an exclusive distributional loss. This method exceeds state-of-the-art (SOTA) results while requiring significantly fewer training images. Additionally, we show that DMs' layers are activated differently at different time steps, leading to an inherent capability to generate images in a single step. Freezing most of the convolutional layers in a DM during distributional distillation leads to further performance improvements. Our method achieves the SOTA results on CIFAR-10 (FID 1.54), AFHQv2 64x64 (FID 1.23), FFHQ 64x64 (FID 0.85) and ImageNet 64x64 (FID 1.16) with great efficiency. Most of those results are obtained with only 5 million training images within 6 hours on 8 A100 GPUs. This breakthrough not only enhances the understanding of efficient image generation models but also offers a scalable framework for advancing the state of the art in various applications.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 變換 · Performer · 特化 · GLUE ·
2024 年 7 月 11 日

NLP(natural language processsing) has achieved great success through the transformer model.However, the model has hundreds of millions or billions parameters,which is huge burden for its deployment on personal computer or small scale of server.To deal with it, we either make the model's weight matrix relatively sparser, or compress attention layer. Pattern pruning ,one of the most important pruning methods, permits selecting fixed number of parameters in each divided pattern block and prunes it. However, the effect of pattern pruning is strictly limited by the sparsity within a region of weights in each layer. In this paper,we first introduced Alternating Direction Method of Multipliers(ADMM) based pattern pruning framework to reshape the distribution of activation map. Specifically, we propose to formulate the pattern pruning on transformer as a constrained optimization and use ADMM to optimize the problem. In this way, the initial dense feature maps is transformed to rather regionally sparsified ones.Therefore, we can then achieve higher compression ratio with better performance based on pattern pruning method. Additionally, this paper provides a theoretical derivations of the ADMM with local sparsity. Finally, we also extend the proposed ADMM based framework on quantization to demonstrate its generalization and use SR-STE to avoid gradient vanishing problem. We conduct extensive experiments on classification tasks over GLUE datasets. Significantly, we achieve 50% percent compression ratio while maintaining 55.4% Matthews correlation on COLA, 68.8% accuracy on RTE and overall score 80.1. Our framework also perform well on other tasks on GLUE datasets.

Neural Radiance Fields (NeRFs) have become a key method for 3D scene representation. With the rising prominence and influence of NeRF, safeguarding its intellectual property has become increasingly important. In this paper, we propose \textbf{NeRFProtector}, which adopts a plug-and-play strategy to protect NeRF's copyright during its creation. NeRFProtector utilizes a pre-trained watermarking base model, enabling NeRF creators to embed binary messages directly while creating their NeRF. Our plug-and-play property ensures NeRF creators can flexibly choose NeRF variants without excessive modifications. Leveraging our newly designed progressive distillation, we demonstrate performance on par with several leading-edge neural rendering methods. Our project is available at: \url{//qsong2001.github.io/NeRFProtector}.

Large Language Models (LLMs) have demonstrated impressive zero shot performance on a wide range of NLP tasks, demonstrating the ability to reason and apply commonsense. A relevant application is to use them for creating high quality synthetic datasets for downstream tasks. In this work, we probe whether GPT-4 can be used to augment existing extractive reading comprehension datasets. Automating data annotation processes has the potential to save large amounts of time, money and effort that goes into manually labelling datasets. In this paper, we evaluate the performance of GPT-4 as a replacement for human annotators for low resource reading comprehension tasks, by comparing performance after fine tuning, and the cost associated with annotation. This work serves to be the first analysis of LLMs as synthetic data augmenters for QA systems, highlighting the unique opportunities and challenges. Additionally, we release augmented versions of low resource datasets, that will allow the research community to create further benchmarks for evaluation of generated datasets.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司