亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies the extreme singular values of non-harmonic Fourier matrices. Such a matrix of size $m\times s$ can be written as $\Phi=[ e^{-2\pi i j x_k}]_{j=0,1,\dots,m-1, k=1,2,\dots,s}$ for some set $\mathcal{X}=\{x_k\}_{k=1}^s$. Its condition number controls the stability of inversion, which is of great importance to super-resolution and nonuniform Fourier transforms. Under the assumption $m\geq 6s$ and without any restrictions on $\mathcal{X}$, the main theorems provide explicit lower bounds for the smallest singular value $\sigma_s(\Phi)$ in terms of distances between elements in $\mathcal{X}$. More specifically, distances exceeding an appropriate scale $\tau$ have modest influence on $\sigma_s(\Phi)$, while the product of distances that are less than $\tau$ dominates the behavior of $\sigma_s(\Phi)$. These estimates reveal how the multiscale structure of $\mathcal{X}$ affects the condition number of Fourier matrices. Theoretical and numerical comparisons indicate that the main theorems significantly improve upon classical bounds and recover the same rate for special cases but with relaxed assumptions.

相關內容

The gradient bounds of generalized barycentric coordinates play an essential role in the $H^1$ norm approximation error estimate of generalized barycentric interpolations. Similarly, the $H^k$ norm, $k>1$, estimate needs upper bounds of high-order derivatives, which are not available in the literature. In this paper, we derive such upper bounds for the Wachspress generalized barycentric coordinates on simple convex $d$-dimensional polytopes, $d\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of, for example, fourth-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.

The celebrated Morris counter uses $\log_2\log_2 n + O(\log_2 \sigma^{-1})$ bits to count up to $n$ with a relative error $\sigma$, where if $\hat{\lambda}$ is the estimate of the current count $\lambda$, then $\mathbb{E}|\hat{\lambda}-\lambda|^2 <\sigma^2\lambda^2$. A natural generalization is \emph{multi-dimensional} approximate counting. Let $d\geq 1$ be the dimension. The count vector $x\in \mathbb{N}^d$ is incremented entry-wisely over a stream of coordinates $(w_1,\ldots,w_n)\in [d]^n$, where upon receiving $w_k\in[d]$, $x_{w_k}\gets x_{w_k}+1$. A \emph{$d$-dimensional approximate counter} is required to count $d$ coordinates simultaneously and return an estimate $\hat{x}$ of the count vector $x$. Aden-Ali, Han, Nelson, and Yu \cite{aden2022amortized} showed that the trivial solution of using $d$ Morris counters that track $d$ coordinates separately is already optimal in space, \emph{if each entry only allows error relative to itself}, i.e., $\mathbb{E}|\hat{x}_j-x_j|^2<\sigma^2|x_j|^2$ for each $j\in [d]$. However, for another natural error metric -- the \emph{Euclidean mean squared error} $\mathbb{E} |\hat{x}-x|^2$ -- we show that using $d$ separate Morris counters is sub-optimal. In this work, we present a simple and optimal $d$-dimensional counter with Euclidean relative error $\sigma$, i.e., $\mathbb{E} |\hat{x}-x|^2 <\sigma^2|x|^2$ where $|x|=\sqrt{\sum_{j=1}^d x_j^2}$, with a matching lower bound. The upper and lower bounds are proved with ideas that are strikingly simple. The upper bound is constructed with a certain variable-length integer encoding and the lower bound is derived from a straightforward volumetric estimation of sphere covering.

We consider random matrix ensembles on the set of Hermitian matrices that are heavy tailed, in particular not all moments exist, and that are invariant under the conjugate action of the unitary group. The latter property entails that the eigenvectors are Haar distributed and, therefore, factorise from the eigenvalue statistics. We prove a classification for stable matrix ensembles of this kind of matrices represented in terms of matrices, their eigenvalues and their diagonal entries with the help of the classification of the multivariate stable distributions and the harmonic analysis on symmetric matrix spaces. Moreover, we identify sufficient and necessary conditions for their domains of attraction. To illustrate our findings we discuss for instance elliptical invariant random matrix ensembles and P\'olya ensembles, the latter playing a particular role in matrix convolutions. As a byproduct we generalise the derivative principle on the Hermitian matrices to general tempered distributions. This principle relates the joint probability density of the eigenvalues and the diagonal entries of the random matrix.

The $d$-independence number of a graph $G$ is the largest possible size of an independent set $I$ in $G$ where each vertex of $I$ has degree at least $d$ in $G$. Upper bounds for the $d$-independence number in planar graphs are well-known for $d=3,4,5$, and can in fact be matched with constructions that actually have minimum degree $d$. In this paper, we explore the same questions for 1-planar graphs, i.e., graphs that can be drawn in the plane with at most one crossing per edge. We give upper bounds for the $d$-independence number for all $d$. Then we give constructions that match the upper bound, and (for small $d$) also have minimum degree $d$.

The Gauss-Newton (GN) matrix plays an important role in machine learning, most evident in its use as a preconditioning matrix for a wide family of popular adaptive methods to speed up optimization. Besides, it can also provide key insights into the optimization landscape of neural networks. In the context of deep neural networks, understanding the GN matrix involves studying the interaction between different weight matrices as well as the dependencies introduced by the data, thus rendering its analysis challenging. In this work, we take a first step towards theoretically characterizing the conditioning of the GN matrix in neural networks. We establish tight bounds on the condition number of the GN in deep linear networks of arbitrary depth and width, which we also extend to two-layer ReLU networks. We expand the analysis to further architectural components, such as residual connections and convolutional layers. Finally, we empirically validate the bounds and uncover valuable insights into the influence of the analyzed architectural components.

The Bernstein-von Mises theorem (BvM) gives conditions under which the posterior distribution of a parameter $\theta\in\Theta\subseteq\mathbb R^d$ based on $n$ independent samples is asymptotically normal. In the high-dimensional regime, a key question is to determine the growth rate of $d$ with $n$ required for the BvM to hold. We show that up to a model-dependent coefficient, $n\gg d^2$ suffices for the BvM to hold in two settings: arbitrary generalized linear models, which include exponential families as a special case, and multinomial data, in which the parameter of interest is an unknown probability mass functions on $d+1$ states. Our results improve on the tightest previously known condition for posterior asymptotic normality, $n\gg d^3$. Our statements of the BvM are nonasymptotic, taking the form of explicit high-probability bounds. To prove the BvM, we derive a new simple and explicit bound on the total variation distance between a measure $\pi\propto e^{-nf}$ on $\Theta\subseteq\mathbb R^d$ and its Laplace approximation.

Many models require integrals of high-dimensional functions: for instance, to obtain marginal likelihoods. Such integrals may be intractable, or too expensive to compute numerically. Instead, we can use the Laplace approximation (LA). The LA is exact if the function is proportional to a normal density; its effectiveness therefore depends on the function's true shape. Here, we propose the use of the probabilistic numerical framework to develop a diagnostic for the LA and its underlying shape assumptions, modelling the function and its integral as a Gaussian process and devising a "test" by conditioning on a finite number of function values. The test is decidedly non-asymptotic and is not intended as a full substitute for numerical integration - rather, it is simply intended to test the feasibility of the assumptions underpinning the LA with as minimal computation. We discuss approaches to optimize and design the test, apply it to known sample functions, and highlight the challenges of high dimensions.

We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.

In this note, when the dimension $p$ is large we look into the insight of the Mar$\check{c}$enko-Pastur equation to get an explicit equality relationship, and use the obtained equality to establish a new kind of orthogonally equivariant estimator of the population covariance matrix. Under some regularity conditions, the proposed novel estimators of the population eigenvalues are shown to be consistent for the eigenvalues of population covariance matrix. It is also shown that the proposed estimator is the best orthogonally equivariant estimator of population covariance matrix under the normalized Stein loss function.

We generalize quantum-classical PCPs, first introduced by Weggemans, Folkertsma and Cade (TQC 2024), to allow for $q$ quantum queries to a polynomially-sized classical proof ($\mathsf{QCPCP}_{Q,c,s}[q]$). Exploiting a connection with the polynomial method, we prove that for any constant $q$, promise gap $c-s = \Omega(1/\text{poly}(n))$ and $\delta>0$, we have $\mathsf{QCPCP}_{Q,c,s}[q] \subseteq \mathsf{QCPCP}_{1-\delta,1/2+\delta}[3] \subseteq \mathsf{BQ} \cdot \mathsf{NP}$, where $\mathsf{BQ} \cdot \mathsf{NP}$ is the class of promise problems with quantum reductions to an $\mathsf{NP}$-complete problem. Surprisingly, this shows that we can amplify the promise gap from inverse polynomial to constant for constant query quantum-classical PCPs, and that any quantum-classical PCP making any constant number of quantum queries can be simulated by one that makes only three classical queries. Nevertheless, even though we can achieve promise gap amplification, our result also gives strong evidence that there exists no constant query quantum-classical PCP for $\mathsf{QCMA}$, as it is unlikely that $\mathsf{QCMA} \subseteq \mathsf{BQ} \cdot \mathsf{NP}$, which we support by giving oracular evidence. In the (poly-)logarithmic query regime, we show for any positive integer $c$, there exists an oracle relative to which $\mathsf{QCPCP}[\mathcal{O}(\log^c n)] \subsetneq \mathsf{QCPCP}_Q[\mathcal{O}(\log^c n)]$, contrasting the constant query case where the equivalence of both query models holds relative to any oracle. Finally, we connect our results to more general quantum-classical interactive proof systems.

北京阿比特科技有限公司