亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-agent collaboration with Large Language Models (LLMs) demonstrates proficiency in basic tasks, yet its efficiency in more complex scenarios remains unexplored. In gaming environments, these agents often face situations without established coordination protocols, requiring them to make intelligent inferences about teammates from limited data. This problem motivates the area of ad hoc teamwork, in which an agent may potentially cooperate with a variety of teammates to achieve a shared goal. Our study focuses on the ad hoc teamwork problem where the agent operates in an environment driven by natural language. Our findings reveal the potential of LLM agents in team collaboration, highlighting issues related to hallucinations in communication. To address this issue, we develop CodeAct, a general agent that equips LLM with enhanced memory and code-driven reasoning, enabling the repurposing of partial information for rapid adaptation to new teammates.

相關內容

The extraction of cyber threat intelligence (CTI) from open sources is a rapidly expanding defensive strategy that enhances the resilience of both Information Technology (IT) and Operational Technology (OT) environments against large-scale cyber-attacks. While previous research has focused on improving individual components of the extraction process, the community lacks open-source platforms for deploying streaming CTI data pipelines in the wild. To address this gap, the study describes the implementation of an efficient and well-performing platform capable of processing compute-intensive data pipelines based on the cloud computing paradigm for real-time detection, collecting, and sharing CTI from different online sources. We developed a prototype platform (TSTEM), a containerized microservice architecture that uses Tweepy, Scrapy, Terraform, ELK, Kafka, and MLOps to autonomously search, extract, and index IOCs in the wild. Moreover, the provisioning, monitoring, and management of the TSTEM platform are achieved through infrastructure as a code (IaC). Custom focus crawlers collect web content, which is then processed by a first-level classifier to identify potential indicators of compromise (IOCs). If deemed relevant, the content advances to a second level of extraction for further examination. Throughout this process, state-of-the-art NLP models are utilized for classification and entity extraction, enhancing the overall IOC extraction methodology. Our experimental results indicate that these models exhibit high accuracy (exceeding 98%) in the classification and extraction tasks, achieving this performance within a time frame of less than a minute. The effectiveness of our system can be attributed to a finely-tuned IOC extraction method that operates at multiple stages, ensuring precise identification of relevant information with low false positives.

The rapidly evolving multimodal Large Language Models (LLMs) urgently require new benchmarks to uniformly evaluate their performance on understanding and textually describing music. However, due to semantic gaps between Music Information Retrieval (MIR) algorithms and human understanding, discrepancies between professionals and the public, and low precision of annotations, existing music description datasets cannot serve as benchmarks. To this end, we present MuChin, the first open-source music description benchmark in Chinese colloquial language, designed to evaluate the performance of multimodal LLMs in understanding and describing music. We established the Caichong Music Annotation Platform (CaiMAP) that employs an innovative multi-person, multi-stage assurance method, and recruited both amateurs and professionals to ensure the precision of annotations and alignment with popular semantics. Utilizing this method, we built a dataset with multi-dimensional, high-precision music annotations, the Caichong Music Dataset (CaiMD), and carefully selected 1,000 high-quality entries to serve as the test set for MuChin. Based on MuChin, we analyzed the discrepancies between professionals and amateurs in terms of music description, and empirically demonstrated the effectiveness of annotated data for fine-tuning LLMs. Ultimately, we employed MuChin to evaluate existing music understanding models on their ability to provide colloquial descriptions of music. All data related to the benchmark and the code for scoring have been open-sourced.

Recently, emergence has received widespread attention from the research community along with the success of large language models. Different from the literature, we hypothesize a key factor that highly promotes the performance during the increase of scale: the reduction of monosemantic neurons that can only form one-to-one correlations with specific features. Monosemantic neurons tend to be sparser and have negative impacts on the performance in large models. Inspired by this insight, we propose an intuitive idea to identify monosemantic neurons and inhibit them. However, achieving this goal is a non-trivial task as there is no unified quantitative evaluation metric and simply banning monosemantic neurons does not promote polysemanticity in neural networks. Therefore, we propose to learn from emergence and present a study on proactively inhibiting the monosemantic neurons in this paper. More specifically, we first propose a new metric to measure the monosemanticity of neurons with the guarantee of efficiency for online computation, then introduce a theoretically supported method to suppress monosemantic neurons and proactively promote the ratios of polysemantic neurons in training neural networks. We validate our conjecture that monosemanticity brings about performance change at different model scales on a variety of neural networks and benchmark datasets in different areas, including language, image, and physics simulation tasks. Further experiments validate our analysis and theory regarding the inhibition of monosemanticity.

Sixth-generation (6G) wireless communication systems, as stated in the European 6G flagship project Hexa-X, are anticipated to feature the integration of intelligence, communication, sensing, positioning, and computation. An important aspect of this integration is integrated sensing and communication (ISAC), in which the same waveform is used for both systems both sensing and communication, to address the challenge of spectrum scarcity. Recently, the orthogonal time frequency space (OTFS) waveform has been proposed to address OFDM's limitations due to the high Doppler spread in some future wireless communication systems. In this paper, we review existing OTFS waveforms for ISAC systems and provide some insights into future research. Firstly, we introduce the basic principles and a system model of OTFS and provide a foundational understanding of this innovative technology's core concepts and architecture. Subsequently, we present an overview of OTFS-based ISAC system frameworks. We provide a comprehensive review of recent research developments and the current state of the art in the field of OTFS-assisted ISAC systems to gain a thorough understanding of the current landscape and advancements. Furthermore, we perform a thorough comparison between OTFS-enabled ISAC operations and traditional OFDM, highlighting the distinctive advantages of OTFS, especially in high Doppler spread scenarios. Subsequently, we address the primary challenges facing OTFS-based ISAC systems, identifying potential limitations and drawbacks. Then, finally, we suggest future research directions, aiming to inspire further innovation in the 6G wireless communication landscape.

Large Language Models (LLMs) demonstrate ever-increasing abilities in mathematical and algorithmic tasks, yet their geometric reasoning skills are underexplored. We investigate LLMs' abilities in constructive geometric problem-solving one of the most fundamental steps in the development of human mathematical reasoning. Our work reveals notable challenges that the state-of-the-art LLMs face in this domain despite many successes in similar areas. LLMs exhibit biases in target variable selection and struggle with 2D spatial relationships, often misrepresenting and hallucinating objects and their placements. To this end, we introduce a framework that formulates an LLMs-based multi-agents system that enhances their existing reasoning potential by conducting an internal dialogue. This work underscores LLMs' current limitations in geometric reasoning and improves geometric reasoning capabilities through self-correction, collaboration, and diverse role specializations.

Gaze estimation, the task of predicting where an individual is looking, is a critical task with direct applications in areas such as human-computer interaction and virtual reality. Estimating the direction of looking in unconstrained environments is difficult, due to the many factors that can obscure the face and eye regions. In this work we propose CrossGaze, a strong baseline for gaze estimation, that leverages recent developments in computer vision architectures and attention-based modules. Unlike previous approaches, our method does not require a specialised architecture, utilizing already established models that we integrate in our architecture and adapt for the task of 3D gaze estimation. This approach allows for seamless updates to the architecture as any module can be replaced with more powerful feature extractors. On the Gaze360 benchmark, our model surpasses several state-of-the-art methods, achieving a mean angular error of 9.94 degrees. Our proposed model serves as a strong foundation for future research and development in gaze estimation, paving the way for practical and accurate gaze prediction in real-world scenarios.

In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning. However, existing literature has highlighted the sensitivity of this capability to the selection of few-shot demonstrations. Current understandings of the underlying mechanisms by which this capability arises from regular language model pretraining objectives remain disconnected from the real-world LLMs. This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models. On this premise, we propose an algorithm to select optimal demonstrations from a set of annotated data with a small LM, and then directly generalize the selected demonstrations to larger LMs. We demonstrate significant improvement over baselines, averaged over eight GPT models on eight real-world text classification datasets. We also demonstrate the real-world usefulness of our algorithm on GSM8K, a math word problem dataset. Our empirical findings support our hypothesis that LLMs implicitly infer a latent variable containing task information.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司