Kleene's computability theory based on the S1-S9 computation schemes constitutes a model for computing with objects of any finite type and extends Turing's 'machine model' which formalises computing with real numbers. A fundamental distinction in Kleene's framework is between normal and non-normal functionals where the former compute the associated Kleene quantifier $\exists^n$ and the latter do not. Historically, the focus was on normal functionals, but recently new non-normal functionals have been studied based on well-known theorems, the weakest among which seems to be the uncountability of the reals. These new non-normal functionals are fundamentally different from historical examples like Tait's fan functional: the latter is computable from $\exists^2$, while the former are computable in $\exists^3$ but not in weaker oracles. Of course, there is a great divide or abyss separating $\exists^2$ and $\exists^3$ and we identify slight variations of our new non-normal functionals that are again computable in $\exists^2$, i.e. fall on different sides of this abyss. Our examples are based on mainstream mathematical notions, like quasi-continuity, Baire classes, bounded variation, and semi-continuity from real analysis.
New geometric methods for fast evaluation of derivatives of polynomial and rational B\'{e}zier curves are proposed. They apply an algorithm for evaluating polynomial or rational B\'{e}zier curves, which was recently given by the authors. Numerical tests show that the new approach is more efficient than the methods which use the famous de Casteljau algorithm. The algorithms work well even for high-order derivatives of rational B\'{e}zier curves of high degrees.
We describe a `discretize-then-relax' strategy to globally minimize integral functionals over functions $u$ in a Sobolev space subject to Dirichlet boundary conditions. The strategy applies whenever the integral functional depends polynomially on $u$ and its derivatives, even if it is nonconvex. The `discretize' step uses a bounded finite element scheme to approximate the integral minimization problem with a convergent hierarchy of polynomial optimization problems over a compact feasible set, indexed by the decreasing size $h$ of the finite element mesh. The `relax' step employs sparse moment-sum-of-squares relaxations to approximate each polynomial optimization problem with a hierarchy of convex semidefinite programs, indexed by an increasing relaxation order $\omega$. We prove that, as $\omega\to\infty$ and $h\to 0$, solutions of such semidefinite programs provide approximate minimizers that converge in a suitable sense (including in certain $L^p$ norms) to the global minimizer of the original integral functional if it is unique. We also report computational experiments showing that our numerical strategy works well even when technical conditions required by our theoretical analysis are not satisfied.
Incorporating probabilistic terms in mathematical models is crucial for capturing and quantifying uncertainties in real-world systems. Indeed, randomness can have a significant impact on the behavior of the problem's solution, and a deeper analysis is needed to obtain more realistic and informative results. On the other hand, the investigation of stochastic models may require great computational resources due to the importance of generating numerous realizations of the system to have meaningful statistics. This makes the development of complexity reduction techniques, such as surrogate models, essential for enabling efficient and scalable simulations. In this work, we exploit polynomial chaos (PC) expansion to study the accuracy of surrogate representations for a bifurcating phenomena in fluid dynamics, namely the Coanda effect, where the stochastic setting gives a different perspective on the non-uniqueness of the solution. Then, its inclusion in the finite element setting is described, arriving to the formulation of the enhanced Spectral Stochastic Finite Element Method (SSFEM). Moreover, we investigate the connections between the deterministic bifurcation diagram and the PC polynomials, underlying their capability in reconstructing the whole solution manifold.
There has been significant interest in understanding how practical constraints on contemporary quantum devices impact the complexity of quantum learning. For the classic question of tomography, recent work tightly characterized the copy complexity for any protocol that can only measure one copy of the unknown state at a time, showing it is polynomially worse than if one can make fully-entangled measurements. While we now have a fairly complete picture of the rates for such tasks in the near-term and fault-tolerant regimes, it remains poorly understood what the landscape in between looks like. In this work, we study tomography in the natural setting where one can make measurements of $t$ copies at a time. For sufficiently small $\epsilon$, we show that for any $t \le d^2$, $\widetilde{\Theta}(\frac{d^3}{\sqrt{t}\epsilon^2})$ copies are necessary and sufficient to learn an unknown $d$-dimensional state $\rho$ to trace distance $\epsilon$. This gives a smooth and optimal interpolation between the known rates for single-copy and fully-entangled measurements. To our knowledge, this is the first smooth entanglement-copy tradeoff known for any quantum learning task, and for tomography, no intermediate point on this curve was known, even at $t = 2$. An important obstacle is that unlike the optimal single-copy protocol, the optimal fully-entangled protocol is inherently biased and thus precludes naive batching approaches. Instead, we devise a novel two-stage procedure that uses Keyl's algorithm to refine a crude estimate for $\rho$ based on single-copy measurements. A key insight is to use Schur-Weyl sampling not to estimate the spectrum of $\rho$, but to estimate the deviation of $\rho$ from the maximally mixed state. When $\rho$ is far from the maximally mixed state, we devise a novel quantum splitting procedure that reduces to the case where $\rho$ is close to maximally mixed.
Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed boundary method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchical B-splines is used to both improve interface geometry representations and resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom compared to classical boundary-fitted finite element methods.
We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.
The roto-translation group SE2 has been of active interest in image analysis due to methods that lift the image data to multi-orientation representations defined on this Lie group. This has led to impactful applications of crossing-preserving flows for image de-noising, geodesic tracking, and roto-translation equivariant deep learning. In this paper, we develop a computational framework for optimal transportation over Lie groups, with a special focus on SE2. We make several theoretical contributions (generalizable to matrix Lie groups) such as the non-optimality of group actions as transport maps, invariance and equivariance of optimal transport, and the quality of the entropic-regularized optimal transport plan using geodesic distance approximations. We develop a Sinkhorn like algorithm that can be efficiently implemented using fast and accurate distance approximations of the Lie group and GPU-friendly group convolutions. We report valuable advancements in the experiments on 1) image barycenters, 2) interpolation of planar orientation fields, and 3) Wasserstein gradient flows on SE2. We observe that our framework of lifting images to SE2 and optimal transport with left-invariant anisotropic metrics leads to equivariant transport along dominant contours and salient line structures in the image. This yields sharper and more meaningful interpolations compared to their counterparts on $\mathbb{R}^2$
Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysis, the critical time step is constrained by so-called "outlier" frequencies, representing the inaccurate high frequency part of the spectrum. Removing or dampening these high frequencies is paramount for fast explicit solution techniques. In this work, we propose robust mass lumping and outlier removal techniques for nontrivial geometries, including multipatch and trimmed geometries. Our lumping strategies provably do not deteriorate (and often improve) the CFL condition of the original problem and are combined with deflation techniques to remove persistent outlier frequencies. Numerical experiments reveal the advantages of the method, especially for simulations covering large time spans where they may halve the number of iterations with little or no effect on the numerical solution.
Three types of the Parikh mapping are introduced, namely, alphabetic, alphabetic-basis and basis. Explicit expressions for attractors of the k-th order in bases n >= 8, including countable ones, are found. Properties for the alphabetic, alphabetic-basis and basis Parikh vectors are given at each step of the Parikh mapping. The maximum number of iterations leading to attractors of the k-th order in the basis n is determined.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.