亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automated answer validation can help improve learning outcomes by providing appropriate feedback to learners, and by making question answering systems and online learning solutions more widely available. There have been some works in science question answering which show that information retrieval methods outperform neural methods, especially in the multiple choice version of this problem. We implement Siamese neural network models and produce a generalised solution to this problem. We compare our supervised model with other text similarity based solutions.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

An agent employing reinforcement learning takes inputs (state variables) from an environment and performs actions that affect the environment in order to achieve some objective. Rewards (positive or negative) guide the agent toward improved future actions. This paper builds on prior clustering neural network research by constructing an agent with biologically plausible neo-Hebbian three-factor synaptic learning rules, with a reward signal as the third factor (in addition to pre- and post-synaptic spikes). The classic cart-pole problem (balancing an inverted pendulum) is used as a running example throughout the exposition. Simulation results demonstrate the efficacy of the approach, and the proposed method may eventually serve as a low-level component of a more general method.

It is challenging to guide neural network (NN) learning with prior knowledge. In contrast, many known properties, such as spatial smoothness or seasonality, are straightforward to model by choosing an appropriate kernel in a Gaussian process (GP). Many deep learning applications could be enhanced by modeling such known properties. For example, convolutional neural networks (CNNs) are frequently used in remote sensing, which is subject to strong seasonal effects. We propose to blend the strengths of deep learning and the clear modeling capabilities of GPs by using a composite kernel that combines a kernel implicitly defined by a neural network with a second kernel function chosen to model known properties (e.g., seasonality). We implement this idea by combining a deep network and an efficient mapping based on the Nystrom approximation, which we call Implicit Composite Kernel (ICK). We then adopt a sample-then-optimize approach to approximate the full GP posterior distribution. We demonstrate that ICK has superior performance and flexibility on both synthetic and real-world data sets. We believe that ICK framework can be used to include prior information into neural networks in many applications.

Fairness for machine learning predictions is widely required in practice for legal, ethical, and societal reasons. Existing work typically focuses on settings without unobserved confounding, even though unobserved confounding can lead to severe violations of causal fairness and, thus, unfair predictions. In this work, we analyze the sensitivity of causal fairness to unobserved confounding. Our contributions are three-fold. First, we derive bounds for causal fairness metrics under different sources of unobserved confounding. This enables practitioners to examine the sensitivity of their machine learning models to unobserved confounding in fairness-critical applications. Second, we propose a novel neural framework for learning fair predictions, which allows us to offer worst-case guarantees of the extent to which causal fairness can be violated due to unobserved confounding. Third, we demonstrate the effectiveness of our framework in a series of experiments, including a real-world case study about predicting prison sentences. To the best of our knowledge, ours is the first work to study causal fairness under unobserved confounding. To this end, our work is of direct practical value as a refutation strategy to ensure the fairness of predictions in high-stakes applications.

The utilization of technology in second language learning and teaching has become ubiquitous. For the assessment of writing specifically, automated writing evaluation (AWE) and grammatical error correction (GEC) have become immensely popular and effective methods for enhancing writing proficiency and delivering instant and individualized feedback to learners. By leveraging the power of natural language processing (NLP) and machine learning algorithms, AWE and GEC systems have been developed separately to provide language learners with automated corrective feedback and more accurate and unbiased scoring that would otherwise be subject to examiners. In this paper, we propose an integrated system for automated writing evaluation with corrective feedback as a means of bridging the gap between AWE and GEC results for second language learners. This system enables language learners to simulate the essay writing tests: a student writes and submits an essay, and the system returns the assessment of the writing along with suggested grammatical error corrections. Given that automated scoring and grammatical correction are more efficient and cost-effective than human grading, this integrated system would also alleviate the burden of manually correcting innumerable essays.

Partial label learning (PLL) learns from training examples each associated with multiple candidate labels, among which only one is valid. In recent years, benefiting from the strong capability of dealing with ambiguous supervision and the impetus of modern data augmentation methods, consistency regularization-based PLL methods have achieved a series of successes and become mainstream. However, as the partial annotation becomes insufficient, their performances drop significantly. In this paper, we leverage easily accessible unlabeled examples to facilitate the partial label consistency regularization. In addition to a partial supervised loss, our method performs a controller-guided consistency regularization at both the label-level and representation-level with the help of unlabeled data. To minimize the disadvantages of insufficient capabilities of the initial supervised model, we use the controller to estimate the confidence of each current prediction to guide the subsequent consistency regularization. Furthermore, we dynamically adjust the confidence thresholds so that the number of samples of each class participating in consistency regularization remains roughly equal to alleviate the problem of class-imbalance. Experiments show that our method achieves satisfactory performances in more practical situations, and its modules can be applied to existing PLL methods to enhance their capabilities.

Inducing and leveraging sparse activations during training and inference is a promising avenue for improving the computational efficiency of deep networks, which is increasingly important as network sizes continue to grow and their application becomes more widespread. Here we use the large width Gaussian process limit to analyze the behaviour, at random initialization, of nonlinear activations that induce sparsity in the hidden outputs. A previously unreported form of training instability is proven for arguably two of the most natural candidates for hidden layer sparsification; those being a shifted ReLU ($\phi(x)=\max(0, x-\tau)$ for $\tau\ge 0$) and soft thresholding ($\phi(x)=0$ for $|x|\le\tau$ and $x-\text{sign}(x)\tau$ for $|x|>\tau$). We show that this instability is overcome by clipping the nonlinear activation magnitude, at a level prescribed by the shape of the associated Gaussian process variance map. Numerical experiments verify the theory and show that the proposed magnitude clipped sparsifying activations can be trained with training and test fractional sparsity as high as 85\% while retaining close to full accuracy.

Recent work on implicit neural representations (INRs) has evidenced their potential for efficiently representing and encoding conventional video content. In this paper we, for the first time, extend their application to immersive (multi-view) videos, by proposing MV-HiNeRV, a new INR-based immersive video codec. MV-HiNeRV is an enhanced version of a state-of-the-art INR-based video codec, HiNeRV, which was developed for single-view video compression. We have modified the model to learn a different group of feature grids for each view, and share the learnt network parameters among all views. This enables the model to effectively exploit the spatio-temporal and the inter-view redundancy that exists within multi-view videos. The proposed codec was used to compress multi-view texture and depth video sequences in the MPEG Immersive Video (MIV) Common Test Conditions, and tested against the MIV Test model (TMIV) that uses the VVenC video codec. The results demonstrate the superior performance of MV-HiNeRV, with significant coding gains (up to 72.33\%) over TMIV. The implementation of MV-HiNeRV is published for further development and evaluation.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

北京阿比特科技有限公司