亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Different technologies can acquire data for gait analysis, such as optical systems and inertial measurement units (IMUs). Each technology has its drawbacks and advantages, fitting best to particular applications. The presented multi-sensor human gait dataset comprises synchronized inertial and optical motion data from 25 subjects free of lower-limb injuries, aged between 18 and 47 years. A smartphone and a custom micro-controlled device with an IMU were attached to one of the subject's legs to capture accelerometer data, and 42 reflexive markers were taped over the whole body to record three-dimensional trajectories. The trajectories and accelerations were simultaneously recorded and synchronized. Participants were instructed to walk on a straight-level walkway at their normal pace. Ten trials for each participant were recorded and pre-processed in each of two sessions, performed on different days. This dataset supports the comparison of gait parameters and properties of inertial and optical capture systems, whereas allows the study of gait characteristics specific for each system.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Nowadays, smartphones can produce a synchronized (synced) stream of high-quality data, including RGB images, inertial measurements, and other data. Therefore, smartphones are becoming appealing sensor systems in the robotics community. Unfortunately, there is still the need for external supporting sensing hardware, such as a depth camera precisely synced with the smartphone sensors. In this paper, we propose a hardware-software recording system that presents a heterogeneous structure and contains a smartphone and an external depth camera for recording visual, depth, and inertial data that are mutually synchronized. The system is synced at the time and the frame levels: every RGB image frame from the smartphone camera is exposed at the same moment of time with a depth camera frame with sub-millisecond precision. We provide a method and a tool for sync performance evaluation that can be applied to any pair of depth and RGB cameras. Our system could be replicated, modified, or extended by employing our open-sourced materials.

This study investigated trust in a social robot compared with that in an AI system and a human as a task partner in consideration of four types of trust: initial trust (trust before a task), early trust (trust in the beginning of a task), trust decline due to a partner's errors, and trust recovery due to a partner's performance recovery. We conducted an online experiment using calculation and emotion recognition tasks where participants answered after referring to the answers of an AI, human, or robot partner. During the experiment, the participants rated their levels of trust in their partners. As a result, trust in a social robot was basically neither similar to that in the AI or in the human and settled between them. The results are discussed in consideration of the previous studies.

The emergence of data-driven approaches for control and planning in robotics have highlighted the need for developing experimental robotic platforms for data collection. However, their implementation is often complex and expensive, in particular for flying and terrestrial robots where the precise estimation of the position requires motion capture devices (MoCap) or Lidar. In order to simplify the use of a robotic platform dedicated to research on a wide range of indoor and outdoor environments, we present a data validation tool for ego-pose estimation that does not require any equipment other than the on-board camera. The method and tool allow a rapid, visual and quantitative evaluation of the quality of ego-pose sensors and are sensitive to different sources of flaws in the acquisition chain, ranging from desynchronization of the sensor flows to misevaluation of the geometric parameters of the robotic platform. Using computer vision, the information from the sensors is used to calculate the motion of a semantic scene point through its projection to the 2D image space of the on-board camera. The deviations of these keypoints from references created with a semi-automatic tool allow rapid and simple quality assessment of the data collected on the platform. To demonstrate the performance of our method, we evaluate it on two challenging standard UAV datasets as well as one dataset taken from a terrestrial robot.

In recent years, autonomous robots have become ubiquitous in research and daily life. Among many factors, public datasets play an important role in the progress of this field, as they waive the tall order of initial investment in hardware and manpower. However, for research on autonomous aerial systems, there appears to be a relative lack of public datasets on par with those used for autonomous driving and ground robots. Thus, to fill in this gap, we conduct a data collection exercise on an aerial platform equipped with an extensive and unique set of sensors: two 3D lidars, two hardware-synchronized global-shutter cameras, multiple Inertial Measurement Units (IMUs), and especially, multiple Ultra-wideband (UWB) ranging units. The comprehensive sensor suite resembles that of an autonomous driving car, but features distinct and challenging characteristics of aerial operations. We record multiple datasets in several challenging indoor and outdoor conditions. Calibration results and ground truth from a high-accuracy laser tracker are also included in each package. All resources can be accessed via our webpage //ntu-aris.github.io/ntu_viral_dataset.

We present the first method for real-time full body capture that estimates shape and motion of body and hands together with a dynamic 3D face model from a single color image. Our approach uses a new neural network architecture that exploits correlations between body and hands at high computational efficiency. Unlike previous works, our approach is jointly trained on multiple datasets focusing on hand, body or face separately, without requiring data where all the parts are annotated at the same time, which is much more difficult to create at sufficient variety. The possibility of such multi-dataset training enables superior generalization ability. In contrast to earlier monocular full body methods, our approach captures more expressive 3D face geometry and color by estimating the shape, expression, albedo and illumination parameters of a statistical face model. Our method achieves competitive accuracy on public benchmarks, while being significantly faster and providing more complete face reconstructions.

Automated anatomical labeling plays a vital role in coronary artery disease diagnosing procedure. The main challenge in this problem is the large individual variability inherited in human anatomy. Existing methods usually rely on the position information and the prior knowledge of the topology of the coronary artery tree, which may lead to unsatisfactory performance when the main branches are confusing. Motivated by the wide application of the graph neural network in structured data, in this paper, we propose a conditional partial-residual graph convolutional network (CPR-GCN), which takes both position and CT image into consideration, since CT image contains abundant information such as branch size and spanning direction. Two majority parts, a Partial-Residual GCN and a conditions extractor, are included in CPR-GCN. The conditions extractor is a hybrid model containing the 3D CNN and the LSTM, which can extract 3D spatial image features along the branches. On the technical side, the Partial-Residual GCN takes the position features of the branches, with the 3D spatial image features as conditions, to predict the label for each branches. While on the mathematical side, our approach twists the partial differential equation (PDE) into the graph modeling. A dataset with 511 subjects is collected from the clinic and annotated by two experts with a two-phase annotation process. According to the five-fold cross-validation, our CPR-GCN yields 95.8% meanRecall, 95.4% meanPrecision and 0.955 meanF1, which outperforms state-of-the-art approaches.

Image captioning has attracted ever-increasing research attention in the multimedia community. To this end, most cutting-edge works rely on an encoder-decoder framework with attention mechanisms, which have achieved remarkable progress. However, such a framework does not consider scene concepts to attend visual information, which leads to sentence bias in caption generation and defects the performance correspondingly. We argue that such scene concepts capture higher-level visual semantics and serve as an important cue in describing images. In this paper, we propose a novel scene-based factored attention module for image captioning. Specifically, the proposed module first embeds the scene concepts into factored weights explicitly and attends the visual information extracted from the input image. Then, an adaptive LSTM is used to generate captions for specific scene types. Experimental results on Microsoft COCO benchmark show that the proposed scene-based attention module improves model performance a lot, which outperforms the state-of-the-art approaches under various evaluation metrics.

Recently, caption generation with an encoder-decoder framework has been extensively studied and applied in different domains, such as image captioning, code captioning, and so on. In this paper, we propose a novel architecture, namely Auto-Reconstructor Network (ARNet), which, coupling with the conventional encoder-decoder framework, works in an end-to-end fashion to generate captions. ARNet aims at reconstructing the previous hidden state with the present one, besides behaving as the input-dependent transition operator. Therefore, ARNet encourages the current hidden state to embed more information from the previous one, which can help regularize the transition dynamics of recurrent neural networks (RNNs). Extensive experimental results show that our proposed ARNet boosts the performance over the existing encoder-decoder models on both image captioning and source code captioning tasks. Additionally, ARNet remarkably reduces the discrepancy between training and inference processes for caption generation. Furthermore, the performance on permuted sequential MNIST demonstrates that ARNet can effectively regularize RNN, especially on modeling long-term dependencies. Our code is available at: //github.com/chenxinpeng/ARNet

Lidar based 3D object detection is inevitable for autonomous driving, because it directly links to environmental understanding and therefore builds the base for prediction and motion planning. The capacity of inferencing highly sparse 3D data in real-time is an ill-posed problem for lots of other application areas besides automated vehicles, e.g. augmented reality, personal robotics or industrial automation. We introduce Complex-YOLO, a state of the art real-time 3D object detection network on point clouds only. In this work, we describe a network that expands YOLOv2, a fast 2D standard object detector for RGB images, by a specific complex regression strategy to estimate multi-class 3D boxes in Cartesian space. Thus, we propose a specific Euler-Region-Proposal Network (E-RPN) to estimate the pose of the object by adding an imaginary and a real fraction to the regression network. This ends up in a closed complex space and avoids singularities, which occur by single angle estimations. The E-RPN supports to generalize well during training. Our experiments on the KITTI benchmark suite show that we outperform current leading methods for 3D object detection specifically in terms of efficiency. We achieve state of the art results for cars, pedestrians and cyclists by being more than five times faster than the fastest competitor. Further, our model is capable of estimating all eight KITTI-classes, including Vans, Trucks or sitting pedestrians simultaneously with high accuracy.

Visual object tracking is an important computer vision problem with numerous real-world applications including human-computer interaction, autonomous vehicles, robotics, motion-based recognition, video indexing, surveillance and security. In this paper, we aim to extensively review the latest trends and advances in the tracking algorithms and evaluate the robustness of trackers in the presence of noise. The first part of this work comprises a comprehensive survey of recently proposed tracking algorithms. We broadly categorize trackers into correlation filter based trackers and the others as non-correlation filter trackers. Each category is further classified into various types of trackers based on the architecture of the tracking mechanism. In the second part of this work, we experimentally evaluate tracking algorithms for robustness in the presence of additive white Gaussian noise. Multiple levels of additive noise are added to the Object Tracking Benchmark (OTB) 2015, and the precision and success rates of the tracking algorithms are evaluated. Some algorithms suffered more performance degradation than others, which brings to light a previously unexplored aspect of the tracking algorithms. The relative rank of the algorithms based on their performance on benchmark datasets may change in the presence of noise. Our study concludes that no single tracker is able to achieve the same efficiency in the presence of noise as under noise-free conditions; thus, there is a need to include a parameter for robustness to noise when evaluating newly proposed tracking algorithms.

北京阿比特科技有限公司