Human impressions of robot performance are often measured through surveys. As a more scalable and cost-effective alternative, we investigate the possibility of predicting people's impressions of robot behavior using non-verbal behavioral cues and machine learning techniques. To this end, we first contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in a VR simulation, together with impressions of robot performance provided by users on a 5-point scale. Second, we contribute analyses of how well humans and supervised learning techniques can predict perceived robot performance based on different observation types (like facial expression features, and features that describe the navigation behavior of the robot and pedestrians). Our results suggest that facial expressions alone provide useful information about human impressions of robot performance; but in the navigation scenarios that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning techniques showed promise because they outperformed humans' predictions of robot performance in most cases. Further, when predicting robot performance as a binary classification task on unseen users' data, the F1 Score of machine learning models more than doubled in comparison to predicting performance on a 5-point scale. This suggested that the models can have good generalization capabilities, although they are better at telling the directionality of robot performance than predicting exact performance ratings. Based on our findings in simulation, we conducted a real-world demonstration in which a mobile robot uses a machine learning model to predict how a human that follows it perceives it. Finally, we discuss the implications of our results for implementing such supervised learning models in real-world navigation scenarios.
Optimizing spectral graph neural networks (GNNs) remains a critical challenge in the field, yet the underlying processes are not well understood. In this paper, we investigate the inherent differences between graph convolution parameters and feature transformation parameters in spectral GNNs and their impact on the optimization landscape. Our analysis reveals that these differences contribute to a poorly conditioned problem, resulting in suboptimal performance. To address this issue, we introduce the concept of the block condition number of the Hessian matrix, which characterizes the difficulty of poorly conditioned problems in spectral GNN optimization. We then propose an asymmetric learning approach, dynamically preconditioning gradients during training to alleviate poorly conditioned problems. Theoretically, we demonstrate that asymmetric learning can reduce block condition numbers, facilitating easier optimization. Extensive experiments on eighteen benchmark datasets show that asymmetric learning consistently improves the performance of spectral GNNs for both heterophilic and homophilic graphs. This improvement is especially notable for heterophilic graphs, where the optimization process is generally more complex than for homophilic graphs. Code is available at //github.com/Mia-321/asym-opt.git.
Parametric Bayesian modeling offers a powerful and flexible toolbox for scientific data analysis. Yet the model, however detailed, may still be wrong, and this can make inferences untrustworthy. In this paper we study nonparametrically perturbed parametric (NPP) Bayesian models, in which a parametric Bayesian model is relaxed via a distortion of its likelihood. We analyze the properties of NPP models when the target of inference is the true data distribution or some functional of it, such as in causal inference. We show that NPP models can offer the robustness of nonparametric models while retaining the data efficiency of parametric models, achieving fast convergence when the parametric model is close to true. To efficiently analyze data with an NPP model, we develop a generalized Bayes procedure to approximate its posterior. We demonstrate our method by estimating causal effects of gene expression from single cell RNA sequencing data. NPP modeling offers an efficient approach to robust Bayesian inference and can be used to robustify any parametric Bayesian model.
The development and evaluation of Large Language Models (LLMs) has primarily focused on their task-solving capabilities, with recent models even surpassing human performance in some areas. However, this focus often neglects whether machine-generated language matches the human level of diversity, in terms of vocabulary choice, syntactic construction, and expression of meaning, raising questions about whether the fundamentals of language generation have been fully addressed. This paper emphasizes the importance of examining the preservation of human linguistic richness by language models, given the concerning surge in online content produced or aided by LLMs. We propose a comprehensive framework for evaluating LLMs from various linguistic diversity perspectives including lexical, syntactic, and semantic dimensions. Using this framework, we benchmark several state-of-the-art LLMs across all diversity dimensions, and conduct an in-depth case study for syntactic diversity. Finally, we analyze how different development and deployment choices impact the linguistic diversity of LLM outputs.
In image reconstruction, an accurate quantification of uncertainty is of great importance for informed decision making. Here, the Bayesian approach to inverse problems can be used: the image is represented through a random function that incorporates prior information which is then updated through Bayes' formula. However, finding a prior is difficult, as images often exhibit non-stationary effects and multi-scale behaviour. Thus, usual Gaussian process priors are not suitable. Deep Gaussian processes, on the other hand, encode non-stationary behaviour in a natural way through their hierarchical structure. To apply Bayes' formula, one commonly employs a Markov chain Monte Carlo (MCMC) method. In the case of deep Gaussian processes, sampling is especially challenging in high dimensions: the associated covariance matrices are large, dense, and changing from sample to sample. A popular strategy towards decreasing computational complexity is to view Gaussian processes as the solutions to a fractional stochastic partial differential equation (SPDE). In this work, we investigate efficient computational strategies to solve the fractional SPDEs occurring in deep Gaussian process sampling, as well as MCMC algorithms to sample from the posterior. Namely, we combine rational approximation and a determinant-free sampling approach to achieve sampling via the fractional SPDE. We test our techniques in standard Bayesian image reconstruction problems: upsampling, edge detection, and computed tomography. In these examples, we show that choosing a non-stationary prior such as the deep GP over a stationary GP can improve the reconstruction. Moreover, our approach enables us to compare results for a range of fractional and non-fractional regularity parameter values.
Scene text spotting has attracted the enthusiasm of relative researchers in recent years. Most existing scene text spotters follow the detection-then-recognition paradigm, where the vanilla detection module hardly determines the reading order and leads to failure recognition. After rethinking the auto-regressive scene text recognition method, we find that a well-trained recognizer can implicitly perceive the local semantics of all characters in a complete word or a sentence without a character-level detection module. Local semantic knowledge not only includes text content but also spatial information in the right reading order. Motivated by the above analysis, we propose the Local Semantics Guided scene text Spotter (LSGSpotter), which auto-regressively decodes the position and content of characters guided by the local semantics. Specifically, two effective modules are proposed in LSGSpotter. On the one hand, we design a Start Point Localization Module (SPLM) for locating text start points to determine the right reading order. On the other hand, a Multi-scale Adaptive Attention Module (MAAM) is proposed to adaptively aggregate text features in a local area. In conclusion, LSGSpotter achieves the arbitrary reading order spotting task without the limitation of sophisticated detection, while alleviating the cost of computational resources with the grid sampling strategy. Extensive experiment results show LSGSpotter achieves state-of-the-art performance on the InverseText benchmark. Moreover, our spotter demonstrates superior performance on English benchmarks for arbitrary-shaped text, achieving improvements of 0.7\% and 2.5\% on Total-Text and SCUT-CTW1500, respectively. These results validate our text spotter is effective for scene texts in arbitrary reading order and shape.
Gaussian Processes (GPs) are widely seen as the state-of-the-art surrogate models for Bayesian optimization (BO) due to their ability to model uncertainty and their performance on tasks where correlations are easily captured (such as those defined by Euclidean metrics) and their ability to be efficiently updated online. However, the performance of GPs depends on the choice of kernel, and kernel selection for complex correlation structures is often difficult or must be made bespoke. While Bayesian neural networks (BNNs) are a promising direction for higher capacity surrogate models, they have so far seen limited use due to poor performance on some problem types. In this paper, we propose an approach which shows competitive performance on many problem types, including some that BNNs typically struggle with. We build on variational Bayesian last layers (VBLLs), and connect training of these models to exact conditioning in GPs. We exploit this connection to develop an efficient online training algorithm that interleaves conditioning and optimization. Our findings suggest that VBLL networks significantly outperform GPs and other BNN architectures on tasks with complex input correlations, and match the performance of well-tuned GPs on established benchmark tasks.
With the rapid development of artificial intelligence, robotics, and Internet of Things, multi-robot systems are progressively acquiring human-like environmental perception and understanding capabilities, empowering them to complete complex tasks through autonomous decision-making and interaction. However, the Internet of Robotic Things (IoRT) faces significant challenges in terms of spectrum resources, sensing accuracy, communication latency, and energy supply. To address these issues, a reconfigurable intelligent surface (RIS)-aided IoRT network is proposed to enhance the overall performance of robotic communication, sensing, computation, and energy harvesting. In the case studies, by jointly optimizing parameters such as transceiver beamforming, robot trajectories, and RIS coefficients, solutions based on multi-agent deep reinforcement learning and multi-objective optimization are proposed to solve problems such as beamforming design, path planning, target sensing, and data aggregation. Numerical results are provided to demonstrate the effectiveness of proposed solutions in improve communication quality, sensing accuracy, computation error, and energy efficiency of RIS-aided IoRT networks.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.