Federated Learning (FL) has emerged as a promising technique for edge devices to collaboratively learn a shared machine learning model while keeping training data locally on the device, thereby removing the need to store and access the full data in the cloud. However, FL is difficult to implement, test and deploy in practice considering heterogeneity in common edge device settings, making it fundamentally hard for researchers to efficiently prototype and test their optimization algorithms. In this work, our aim is to alleviate this problem by introducing FL_PyTorch : a suite of open-source software written in python that builds on top of one the most popular research Deep Learning (DL) framework PyTorch. We built FL_PyTorch as a research simulator for FL to enable fast development, prototyping and experimenting with new and existing FL optimization algorithms. Our system supports abstractions that provide researchers with a sufficient level of flexibility to experiment with existing and novel approaches to advance the state-of-the-art. Furthermore, FL_PyTorch is a simple to use console system, allows to run several clients simultaneously using local CPUs or GPU(s), and even remote compute devices without the need for any distributed implementation provided by the user. FL_PyTorch also offers a Graphical User Interface. For new methods, researchers only provide the centralized implementation of their algorithm. To showcase the possibilities and usefulness of our system, we experiment with several well-known state-of-the-art FL algorithms and a few of the most common FL datasets.
Adhesive joints are increasingly used in industry for a wide variety of applications because of their favorable characteristics such as high strength-to-weight ratio, design flexibility, limited stress concentrations, planar force transfer, good damage tolerance and fatigue resistance. Finding the optimal process parameters for an adhesive bonding process is challenging: the optimization is inherently multi-objective (aiming to maximize break strength while minimizing cost) and constrained (the process should not result in any visual damage to the materials, and stress tests should not result in failures that are adhesion-related). Real life physical experiments in the lab are expensive to perform; traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem, due to the prohibitive amount of experiments required for evaluation. In this research, we successfully applied specific machine learning techniques (Gaussian Process Regression and Logistic Regression) to emulate the objective and constraint functions based on a \emph{limited} amount of experimental data. The techniques are embedded in a Bayesian optimization algorithm, which succeeds in detecting Pareto-optimal process settings in a highly efficient way (i.e., requiring a limited number of extra experiments).
Federated learning (FL) is proving to be one of the most promising paradigms for leveraging distributed resources, enabling a set of clients to collaboratively train a machine learning model while keeping the data decentralized. The explosive growth of interest in the topic has led to rapid advancements in several core aspects like communication efficiency, handling non-IID data, privacy, and security capabilities. However, the majority of FL works only deal with supervised tasks, assuming that clients' training sets are labeled. To leverage the enormous unlabeled data on distributed edge devices, in this paper, we aim to extend the FL paradigm to unsupervised tasks by addressing the problem of anomaly detection in decentralized settings. In particular, we propose a novel method in which, through a preprocessing phase, clients are grouped into communities, each having similar majority (i.e., inlier) patterns. Subsequently, each community of clients trains the same anomaly detection model (i.e., autoencoders) in a federated fashion. The resulting model is then shared and used to detect anomalies within the clients of the same community that joined the corresponding federated process. Experiments show that our method is robust, and it can detect communities consistent with the ideal partitioning in which groups of clients having the same inlier patterns are known. Furthermore, the performance is significantly better than those in which clients train models exclusively on local data and comparable with federated models of ideal communities' partition.
Federated Learning (FL) allows for collaboratively aggregating learned information across several computing devices and sharing the same amongst them, thereby tackling issues of privacy and the need of huge bandwidth. FL techniques generally use a central server or cloud for aggregating the models received from the devices. Such centralized FL techniques suffer from inherent problems such as failure of the central node and bottlenecks in channel bandwidth. When FL is used in conjunction with connected robots serving as devices, a failure of the central controlling entity can lead to a chaotic situation. This paper describes a mobile agent based paradigm to decentralize FL in multi-robot scenarios. Using Webots, a popular free open-source robot simulator, and Tartarus, a mobile agent platform, we present a methodology to decentralize federated learning in a set of connected robots. With Webots running on different connected computing systems, we show how mobile agents can perform the task of Decentralized Federated Reinforcement Learning (dFRL). Results obtained from experiments carried out using Q-learning and SARSA by aggregating their corresponding Q-tables, show the viability of using decentralized FL in the domain of robotics. Since the proposed work can be used in conjunction with other learning algorithms and also real robots, it can act as a vital tool for the study of decentralized FL using heterogeneous learning algorithms concurrently in multi-robot scenarios.
Privacy regulation laws, such as GDPR, impose transparency and security as design pillars for data processing algorithms. In this context, federated learning is one of the most influential frameworks for privacy-preserving distributed machine learning, achieving astounding results in many natural language processing and computer vision tasks. Several federated learning frameworks employ differential privacy to prevent private data leakage to unauthorized parties and malicious attackers. Many studies, however, highlight the vulnerabilities of standard federated learning to poisoning and inference, thus raising concerns about potential risks for sensitive data. To address this issue, we present SGDE, a generative data exchange protocol that improves user security and machine learning performance in a cross-silo federation. The core of SGDE is to share data generators with strong differential privacy guarantees trained on private data instead of communicating explicit gradient information. These generators synthesize an arbitrarily large amount of data that retain the distinctive features of private samples but differ substantially. In this work, SGDE is tested in a cross-silo federated network on images and tabular datasets, exploiting beta-variational autoencoders as data generators. From the results, the inclusion of SGDE turns out to improve task accuracy and fairness, as well as resilience to the most influential attacks on federated learning.
Threshold aggregation reporting systems promise a practical, privacy-preserving solution for developers to learn how their applications are used "\emph{in-the-wild}". Unfortunately, proposed systems to date prove impractical for wide scale adoption, suffering from a combination of requiring: \emph{i)} prohibitive trust assumptions; \emph{ii)} high computation costs; or \emph{iii)} massive user bases. As a result, adoption of truly-private approaches has been limited to only a small number of enormous (and enormously costly) projects. In this work, we improve the state of private data collection by proposing $\mathsf{STAR}$, a highly efficient, easily deployable system for providing cryptographically-enforced $\kappa$-anonymity protections on user data collection. The $\mathsf{STAR}$ protocol is easy to implement and cheap to run, all while providing privacy properties similar to, or exceeding the current state-of-the-art. Measurements of our open-source implementation of $\mathsf{STAR}$ find that it is $1773\times$ quicker, requires $62.4\times$ less communication, and is $24\times$ cheaper to run than the existing state-of-the-art.
Federated learning is an approach to train machine learning models on the edge of the networks, as close as possible where the data is produced, motivated by the emerging problem of the inability to stream and centrally store the large amount of data produced by edge devices as well as by data privacy concerns. This learning paradigm is in need of robust algorithms to device heterogeneity and data heterogeneity. This paper proposes ModFL as a federated learning framework that splits the models into a configuration module and an operation module enabling federated learning of the individual modules. This modular approach makes it possible to extract knowlege from a group of heterogeneous devices as well as from non-IID data produced from its users. This approach can be viewed as an extension of the federated learning with personalisation layers FedPer framework that addresses data heterogeneity. We show that ModFL outperforms FedPer for non-IID data partitions of CIFAR-10 and STL-10 using CNNs. Our results on time-series data with HAPT, RWHAR, and WISDM datasets using RNNs remain inconclusive, we argue that the chosen datasets do not highlight the advantages of ModFL, but in the worst case scenario it performs as well as FedPer.
The advent of artificial intelligence technology paved the way of many researches to be made within air combat sector. Academicians and many other researchers did a research on a prominent research direction called autonomous maneuver decision of UAV. Elaborative researches produced some outcomes, but decisions that include Reinforcement Learning(RL) came out to be more efficient. There have been many researches and experiments done to make an agent reach its target in an optimal way, most prominent are Genetic Algorithm(GA) , A star, RRT and other various optimization techniques have been used. But Reinforcement Learning is the well known one for its success. In DARPHA Alpha Dogfight Trials, reinforcement learning prevailed against a real veteran F16 human pilot who was trained by Boeing. This successor model was developed by Heron Systems. After this accomplishment, reinforcement learning bring tremendous attention on itself. In this research we aimed our UAV which has a dubin vehicle dynamic property to move to the target in two dimensional space in an optimal path using Twin Delayed Deep Deterministic Policy Gradients (TD3) and used in experience replay Hindsight Experience Replay(HER).We did tests on two different environments and used simulations.
The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.