亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-Agent Path Finding (MAPF) in crowded environments presents a challenging problem in motion planning, aiming to find collision-free paths for all agents in the system. MAPF finds a wide range of applications in various domains, including aerial swarms, autonomous warehouse robotics, and self-driving vehicles. The current approaches for MAPF can be broadly categorized into two main categories: centralized and decentralized planning. Centralized planning suffers from the curse of dimensionality and thus does not scale well in large and complex environments. On the other hand, decentralized planning enables agents to engage in real-time path planning within a partially observable environment, demonstrating implicit coordination. However, they suffer from slow convergence and performance degradation in dense environments. In this paper, we introduce CRAMP, a crowd-aware decentralized approach to address this problem by leveraging reinforcement learning guided by a boosted curriculum-based training strategy. We test CRAMP on simulated environments and demonstrate that our method outperforms the state-of-the-art decentralized methods for MAPF on various metrics. CRAMP improves the solution quality up to 58% measured in makespan and collision count, and up to 5% in success rate in comparison to previous methods.

相關內容

Recently, large-scale pre-trained models such as Segment-Anything Model (SAM) and Contrastive Language-Image Pre-training (CLIP) have demonstrated remarkable success and revolutionized the field of computer vision. These foundation vision models effectively capture knowledge from a large-scale broad data with their vast model parameters, enabling them to perform zero-shot segmentation on previously unseen data without additional training. While they showcase competence in 2D tasks, their potential for enhancing 3D scene understanding remains relatively unexplored. To this end, we present a novel framework that adapts various foundational models for the 3D point cloud segmentation task. Our approach involves making initial predictions of 2D semantic masks using different large vision models. We then project these mask predictions from various frames of RGB-D video sequences into 3D space. To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting. We examine diverse scenarios, like zero-shot learning and limited guidance from sparse 2D point labels, to assess the pros and cons of different vision foundation models. Our approach is experimented on ScanNet dataset for 3D indoor scenes, and the results demonstrate the effectiveness of adopting general 2D foundation models on solving 3D point cloud segmentation tasks.

Current methods for few-shot action recognition mainly fall into the metric learning framework following ProtoNet, which demonstrates the importance of prototypes. Although they achieve relatively good performance, the effect of multimodal information is ignored, e.g. label texts. In this work, we propose a novel MultimOdal PRototype-ENhanced Network (MORN), which uses the semantic information of label texts as multimodal information to enhance prototypes. A CLIP visual encoder and a frozen CLIP text encoder are introduced to obtain features with good multimodal initialization. Then in the visual flow, visual prototypes are computed by a Temporal-Relational CrossTransformer (TRX) module for example. In the text flow, a semantic-enhanced (SE) module and an inflating operation are used to obtain text prototypes. The final multimodal prototypes are then computed by a multimodal prototype-enhanced (MPE) module. Besides, we define a PRototype SImilarity DiffErence (PRIDE) to evaluate the quality of prototypes, which is used to verify our improvement on the prototype level and effectiveness of MORN. We conduct extensive experiments on four popular datasets, and MORN achieves state-of-the-art results on HMDB51, UCF101, Kinetics and SSv2. When plugging PRIDE into the training stage, the performance can be further improved.

In the context of the long-tail scenario, models exhibit a strong demand for high-quality data. Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance. Among these approaches, information augmentation has been progressively introduced as a crucial category. It achieves a balance in model performance by augmenting the richness and quantity of samples in the tail classes. However, there is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation methods. Consequently, the utilization of information augmentation in long-tail recognition tasks relies heavily on empirical and intricate fine-tuning. This work makes two primary contributions. Firstly, we approach the problem from the perspectives of feature diversity and distribution shift, introducing the concept of Feature Diversity Gain (FDG) to elucidate why information augmentation is effective. We find that the performance of information augmentation can be explained by FDG, and its performance peaks when FDG achieves an appropriate balance. Experimental results demonstrate that by using FDG to select augmented data, we can further enhance model performance without the need for any modifications to the model's architecture. Thus, data-centric approaches hold significant potential in the field of long-tail recognition, beyond the development of new model structures. Furthermore, we systematically introduce the core components and fundamental tasks of a data-centric long-tail learning framework for the first time. These core components guide the implementation and deployment of the system, while the corresponding fundamental tasks refine and expand the research area.

Automated reverse engineering of HTML/CSS code from UI screenshots is an important yet challenging problem with broad applications in website development and design. In this paper, we propose a novel vision-code transformer (ViCT) composed of a vision encoder processing the screenshots and a language decoder to generate the code. They are initialized by pre-trained models such as ViT/DiT and GPT-2/LLaMA but aligning the two modalities requires end-to-end finetuning, which aims to minimize the visual discrepancy between the code-rendered webpage and the original screenshot. However, the rendering is non-differentiable and causes costly overhead. We address this problem by actor-critic fine-tuning where a visual critic without rendering (ViCR) is developed to predict visual discrepancy given the original and generated code. To train and evaluate our models, we created two synthetic datasets of varying complexity, with over 75,000 unique (code, screenshot) pairs. We evaluate the UI-to-Code performance using a combination of automated metrics such as MSE, BLEU, IoU, and a novel htmlBLEU score. ViCT outperforms a strong baseline model DiT-GPT2, improving IoU from 0.64 to 0.79 and lowering MSE from 12.25 to 9.02. With much lower computational cost, it can achieve comparable performance as when using a larger decoder such as LLaMA.

This paper presents a cooperative multi-robot multi-target tracking framework aimed at enhancing the efficiency of the heterogeneous sensor network and, consequently, improving overall target tracking accuracy. The concept of normalized unused sensing capacity is introduced to quantify the information a sensor is currently gathering relative to its theoretical maximum. This measurement can be computed using entirely local information and is applicable to various sensor models, distinguishing it from previous literature on the subject. It is then utilized to develop a distributed coverage control strategy for a heterogeneous sensor network, adaptively balancing the workload based on each sensor's current unused capacity. The algorithm is validated through a series of ROS and MATLAB simulations, demonstrating superior results compared to standard approaches that do not account for heterogeneity or current usage rates.

Offline Imitation Learning (IL) is a powerful paradigm to learn visuomotor skills, especially for high-precision manipulation tasks. However, IL methods are prone to spurious correlation - expressive models may focus on distractors that are irrelevant to action prediction - and are thus fragile in real-world deployment. Prior methods have addressed this challenge by exploring different model architectures and action representations. However, none were able to balance between sample efficiency, robustness against distractors, and solving high-precision manipulation tasks with complex action space. To this end, we present $\textbf{C}$onstrained-$\textbf{C}$ontext $\textbf{C}$onditional $\textbf{D}$iffusion $\textbf{M}$odel (C3DM), a diffusion model policy for solving 6-DoF robotic manipulation tasks with high precision and ability to ignore distractions. A key component of C3DM is a fixation step that helps the action denoiser to focus on task-relevant regions around the predicted action while ignoring distractors in the context. We empirically show that C3DM is able to consistently achieve high success rate on a wide array of tasks, ranging from table top manipulation to industrial kitting, that require varying levels of precision and robustness to distractors. For details, please visit this //sites.google.com/view/c3dm-imitation-learning

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司