Transferring knowledge learned from the labeled source domain to the raw target domain for unsupervised domain adaptation (UDA) is essential to the scalable deployment of an autonomous driving system. State-of-the-art approaches in UDA often employ a key concept: utilize joint supervision signals from both the source domain (with ground-truth) and the target domain (with pseudo-labels) for self-training. In this work, we improve and extend on this aspect. We present ConDA, a concatenation-based domain adaptation framework for LiDAR semantic segmentation that: (1) constructs an intermediate domain consisting of fine-grained interchange signals from both source and target domains without destabilizing the semantic coherency of objects and background around the ego-vehicle; and (2) utilizes the intermediate domain for self-training. Additionally, to improve both the network training on the source domain and self-training on the intermediate domain, we propose an anti-aliasing regularizer and an entropy aggregator to reduce the detrimental effects of aliasing artifacts and noisy target predictions. Through extensive experiments, we demonstrate that ConDA is significantly more effective in mitigating the domain gap compared to prior arts.
Unsupervised Domain Adaptation (UDA), a branch of transfer learning where labels for target samples are unavailable, has been widely researched and developed in recent years with the help of adversarially trained models. Although existing UDA algorithms are able to guide neural networks to extract transferable and discriminative features, classifiers are merely trained under the supervision of labeled source data. Given the inevitable discrepancy between source and target domains, the classifiers can hardly be aware of the target classification boundaries. In this paper, Shuffle Augmentation of Features (SAF), a novel UDA framework, is proposed to address the problem by providing the classifier with supervisory signals from target feature representations. SAF learns from the target samples, adaptively distills class-aware target features, and implicitly guides the classifier to find comprehensive class borders. Demonstrated by extensive experiments, the SAF module can be integrated into any existing adversarial UDA models to achieve performance improvements.
While huge volumes of unlabeled data are generated and made available in many domains, the demand for automated understanding of visual data is higher than ever before. Most existing machine learning models typically rely on massive amounts of labeled training data to achieve high performance. Unfortunately, such a requirement cannot be met in real-world applications. The number of labels is limited and manually annotating data is expensive and time-consuming. It is often necessary to transfer knowledge from an existing labeled domain to a new domain. However, model performance degrades because of the differences between domains (domain shift or dataset bias). To overcome the burden of annotation, Domain Adaptation (DA) aims to mitigate the domain shift problem when transferring knowledge from one domain into another similar but different domain. Unsupervised DA (UDA) deals with a labeled source domain and an unlabeled target domain. The principal objective of UDA is to reduce the domain discrepancy between the labeled source data and unlabeled target data and to learn domain-invariant representations across the two domains during training. In this paper, we first define UDA problem. Secondly, we overview the state-of-the-art methods for different categories of UDA from both traditional methods and deep learning based methods. Finally, we collect frequently used benchmark datasets and report results of the state-of-the-art methods of UDA on visual recognition problem.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Semantic segmentation is a challenging task in the absence of densely labelled data. Only relying on class activation maps (CAM) with image-level labels provides deficient segmentation supervision. Prior works thus consider pre-trained models to produce coarse saliency maps to guide the generation of pseudo segmentation labels. However, the commonly used off-line heuristic generation process cannot fully exploit the benefits of these coarse saliency maps. Motivated by the significant inter-task correlation, we propose a novel weakly supervised multi-task framework termed as AuxSegNet, to leverage saliency detection and multi-label image classification as auxiliary tasks to improve the primary task of semantic segmentation using only image-level ground-truth labels. Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations. The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks. The mutual boost between pseudo label updating and cross-task affinity learning enables iterative improvements on segmentation performance. Extensive experiments demonstrate the effectiveness of the proposed auxiliary learning network structure and the cross-task affinity learning method. The proposed approach achieves state-of-the-art weakly supervised segmentation performance on the challenging PASCAL VOC 2012 and MS COCO benchmarks.
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
In this paper, we tackle the unsupervised domain adaptation (UDA) for semantic segmentation, which aims to segment the unlabeled real data using labeled synthetic data. The main problem of UDA for semantic segmentation relies on reducing the domain gap between the real image and synthetic image. To solve this problem, we focused on separating information in an image into content and style. Here, only the content has cues for semantic segmentation, and the style makes the domain gap. Thus, precise separation of content and style in an image leads to effect as supervision of real data even when learning with synthetic data. To make the best of this effect, we propose a zero-style loss. Even though we perfectly extract content for semantic segmentation in the real domain, another main challenge, the class imbalance problem, still exists in UDA for semantic segmentation. We address this problem by transferring the contents of tail classes from synthetic to real domain. Experimental results show that the proposed method achieves the state-of-the-art performance in semantic segmentation on the major two UDA settings.
We aim at the problem named One-Shot Unsupervised Domain Adaptation. Unlike traditional Unsupervised Domain Adaptation, it assumes that only one unlabeled target sample can be available when learning to adapt. This setting is realistic but more challenging, in which conventional adaptation approaches are prone to failure due to the scarce of unlabeled target data. To this end, we propose a novel Adversarial Style Mining approach, which combines the style transfer module and task-specific module into an adversarial manner. Specifically, the style transfer module iteratively searches for harder stylized images around the one-shot target sample according to the current learning state, leading the task model to explore the potential styles that are difficult to solve in the almost unseen target domain, thus boosting the adaptation performance in a data-scarce scenario. The adversarial learning framework makes the style transfer module and task-specific module benefit each other during the competition. Extensive experiments on both cross-domain classification and segmentation benchmarks verify that ASM achieves state-of-the-art adaptation performance under the challenging one-shot setting.
We consider the problem of unsupervised domain adaptation for semantic segmentation by easing the domain shift between the source domain (synthetic data) and the target domain (real data) in this work. State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue. Based on the observation that stuff categories usually share similar appearances across images of different domains while things (i.e. object instances) have much larger differences, we propose to improve the semantic-level alignment with different strategies for stuff regions and for things: 1) for the stuff categories, we generate feature representation for each class and conduct the alignment operation from the target domain to the source domain; 2) for the thing categories, we generate feature representation for each individual instance and encourage the instance in the target domain to align with the most similar one in the source domain. In this way, the individual differences within thing categories will also be considered to alleviate over-alignment. In addition to our proposed method, we further reveal the reason why the current adversarial loss is often unstable in minimizing the distribution discrepancy and show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains. We conduct extensive experiments in two unsupervised domain adaptation tasks, i.e. GTA5 to Cityscapes and SYNTHIA to Cityscapes, and achieve the new state-of-the-art segmentation accuracy.
Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.
Recent works showed that Generative Adversarial Networks (GANs) can be successfully applied in unsupervised domain adaptation, where, given a labeled source dataset and an unlabeled target dataset, the goal is to train powerful classifiers for the target samples. In particular, it was shown that a GAN objective function can be used to learn target features indistinguishable from the source ones. In this work, we extend this framework by (i) forcing the learned feature extractor to be domain-invariant, and (ii) training it through data augmentation in the feature space, namely performing feature augmentation. While data augmentation in the image space is a well established technique in deep learning, feature augmentation has not yet received the same level of attention. We accomplish it by means of a feature generator trained by playing the GAN minimax game against source features. Results show that both enforcing domain-invariance and performing feature augmentation lead to superior or comparable performance to state-of-the-art results in several unsupervised domain adaptation benchmarks.