Statutory reasoning refers to the application of legislative provisions to a series of case facts described in natural language. We re-frame statutory reasoning as an analogy task, where each instance of the analogy task involves a combination of two instances of statutory reasoning. This increases the dataset size by two orders of magnitude, and introduces an element of interpretability. We show that this task is roughly as difficult to Natural Language Processing models as the original task. Finally, we come back to statutory reasoning, solving it with a combination of a retrieval mechanism and analogy models, and showing some progress on prior comparable work.
We consider the fundamental problem of allocating a set of indivisible goods among strategic agents with additive valuation functions. It is well known that, in the absence of monetary transfers, Pareto efficient and truthful rules are dictatorial, while there is no deterministic truthful mechanism that allocates all items and achieves envy-freeness up to one item (EF1), even for the case of two agents. In this paper, we investigate the interplay of fairness and efficiency under a relaxation of truthfulness called non-obvious manipulability (NOM), recently proposed by Troyan and Morrill. We show that this relaxation allows us to bypass the aforementioned negative results in a very strong sense. Specifically, we prove that there are deterministic and EF1 algorithms that are not obviously manipulable, and the algorithm that maximizes utilitarian social welfare (the sum of agents' utilities), which is Pareto efficient but not dictatorial, is not obviously manipulable for $n \geq 3$ agents (but obviously manipulable for $n=2$ agents). At the same time, maximizing the egalitarian social welfare (the minimum of agents' utilities) or the Nash social welfare (the product of agents' utilities) is obviously manipulable for any number of agents and items. Our main result is an approximation preserving black-box reduction from the problem of designing EF1 and NOM mechanisms to the problem of designing EF1 algorithms. En route, we prove an interesting structural result about EF1 allocations, as well as new "best-of-both-worlds" results (for the problem without incentives), that might be of independent interest.
Contemporary language models enable new opportunities for structured reasoning with text, such as the construction and evaluation of intuitive, proof-like textual entailment trees without relying on brittle formal logic. However, progress in this direction has been hampered by a long-standing lack of a clear protocol for determining what valid compositional entailment is. This absence causes noisy datasets and limited performance gains by modern neuro-symbolic engines. To address these problems, we formulate a consistent and theoretically grounded approach to annotating decompositional entailment datasets, and evaluate its impact on LLM-based textual inference. We find that our resulting dataset, RDTE (Recognizing Decompositional Textual Entailment), has a substantially higher internal consistency (+9%) than prior decompositional entailment datasets, suggesting that RDTE is a significant step forward in the long-standing problem of forming a clear protocol for discerning entailment. We also find that training an RDTE-oriented entailment classifier via knowledge distillation and employing it in a modern neuro-symbolic reasoning engine significantly improves results (both accuracy and proof quality) over other entailment classifier baselines, illustrating the practical benefit of this advance for textual inference.
By relaxing conditions for natural structure learning algorithms, a family of constraint-based algorithms containing all exact structure learning algorithms under the faithfulness assumption, we define localised natural structure learning algorithms (LoNS). We also provide a set of necessary and sufficient assumptions for consistency of LoNS, which can be thought of as a strict relaxation of the restricted faithfulness assumption. We provide a practical LoNS algorithm that runs in exponential time, which is then compared with related existing structure learning algorithms, namely PC/SGS and the relatively recent Sparsest Permutation algorithm. Simulation studies are also provided.
This paper establishes a combinatorial central limit theorem for stratified randomization that holds under Lindeberg-type conditions and allows for a growing number of large and small strata. The result is then applied to derive the asymptotic distributions of two test statistics proposed in a finite population setting with randomly assigned instruments and a super population instrumental variables model, both having many strata.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.