亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates goal-oriented communication for remote estimation of multiple Markov sources in resource-constrained networks. An agent decides the updating times of the sources and transmits the packet to a remote destination over an unreliable channel with delay. The destination is tasked with source reconstruction for actuation. We utilize the metric \textit{cost of actuation error} (CAE) to capture the state-dependent actuation costs. We aim for a sampling policy that minimizes the long-term average CAE subject to an average resource constraint. We formulate this problem as an average-cost constrained Markov Decision Process (CMDP) and relax it into an unconstrained problem by utilizing \textit{Lyapunov drift} techniques. Then, we propose a low-complexity \textit{drift-plus-penalty} (DPP) policy for systems with known source/channel statistics and a Lyapunov optimization-based deep reinforcement learning (LO-DRL) policy for unknown environments. Our policies significantly reduce the number of uninformative transmissions by exploiting the timing of the important information.

相關內容

In the past few years, large-scale pre-trained vision-language models like CLIP have achieved tremendous success in various fields. Naturally, how to transfer the rich knowledge in such huge pre-trained models to downstream tasks and datasets becomes a hot topic. During downstream adaptation, the most challenging problems are overfitting and catastrophic forgetting, which can cause the model to overly focus on the current data and lose more crucial domain-general knowledge. Existing works use classic regularization techniques to solve the problems. As solutions become increasingly complex, the ever-growing storage and inference costs are also a significant problem that urgently needs to be addressed. While in this paper, we start from an observation that proper random noise can suppress overfitting and catastrophic forgetting. Then we regard quantization error as a kind of noise, and explore quantization for regularizing vision-language model, which is quite efficiency and effective. Furthermore, to improve the model's generalization capability while maintaining its specialization capacity at minimal cost, we deeply analyze the characteristics of the weight distribution in prompts, conclude several principles for quantization module design and follow such principles to create several competitive baselines. The proposed method is significantly efficient due to its inherent lightweight nature, making it possible to adapt on extremely resource-limited devices. Our method can be fruitfully integrated into many existing approaches like MaPLe, enhancing accuracy while reducing storage overhead, making it more powerful yet versatile. Extensive experiments on 11 datasets shows great superiority of our method sufficiently. Code is available at //github.com/beyondhtx/QPrompt.

We introduce Mysticeti-C, the first DAG-based Byzantine consensus protocol to achieve the lower bounds of latency of 3 message rounds. Since Mysticeti-C is built over DAGs it also achieves high resource efficiency and censorship resistance. Mysticeti-C achieves this latency improvement by avoiding explicit certification of the DAG blocks and by proposing a novel commit rule such that every block can be committed without delays, resulting in optimal latency in the steady state and under crash failures. We further extend Mysticeti-C to Mysticeti-FPC, which incorporates a fast commit path that achieves even lower latency for transferring assets. Unlike prior fast commit path protocols, Mysticeti-FPC minimizes the number of signatures and messages by weaving the fast path transactions into the DAG. This frees up resources, which subsequently result in better performance. We prove the safety and liveness in a Byzantine context. We evaluate both Mysticeti protocols and compare them with state-of-the-art consensus and fast path protocols to demonstrate their low latency and resource efficiency, as well as their more graceful degradation under crash failures. Mysticeti-C is the first Byzantine consensus protocol to achieve WAN latency of 0.5s for consensus commit while simultaneously maintaining state-of-the-art throughput of over 200k TPS. Finally, we report on integrating Mysticeti-C as the consensus protocol into the Sui blockchain, resulting in over 4x latency reduction.

Recent speech enhancement methods based on convolutional neural networks (CNNs) and transformer have been demonstrated to efficaciously capture time-frequency (T-F) information on spectrogram. However, the correlation of each channels of speech features is failed to explore. Theoretically, each channel map of speech features obtained by different convolution kernels contains information with different scales demonstrating strong correlations. To fill this gap, we propose a novel dual-branch architecture named channel-aware dual-branch conformer (CADB-Conformer), which effectively explores the long range time and frequency correlations among different channels, respectively, to extract channel relation aware time-frequency information. Ablation studies conducted on DNS-Challenge 2020 dataset demonstrate the importance of channel feature leveraging while showing the significance of channel relation aware T-F information for speech enhancement. Extensive experiments also show that the proposed model achieves superior performance than recent methods with an attractive computational costs.

The significant progress in the development of Large Language Models has contributed to blurring the distinction between human and AI-generated text. The increasing pervasiveness of AI-generated text and the difficulty in detecting it poses new challenges for our society. In this paper, we tackle the problem of detecting and attributing AI-generated text by proposing WhosAI, a triplet-network contrastive learning framework designed to predict whether a given input text has been generated by humans or AI and to unveil the authorship of the text. Unlike most existing approaches, our proposed framework is conceived to learn semantic similarity representations from multiple generators at once, thus equally handling both detection and attribution tasks. Furthermore, WhosAI is model-agnostic and scalable to the release of new AI text-generation models by incorporating their generated instances into the embedding space learned by our framework. Experimental results on the TuringBench benchmark of 200K news articles show that our proposed framework achieves outstanding results in both the Turing Test and Authorship Attribution tasks, outperforming all the methods listed in the TuringBench benchmark leaderboards.

The paper presents a study of methods for extracting information about dialogue participants and evaluating their performance in Russian. To train models for this task, the Multi-Session Chat dataset was translated into Russian using multiple translation models, resulting in improved data quality. A metric based on the F-score concept is presented to evaluate the effectiveness of the extraction models. The metric uses a trained classifier to identify the dialogue participant to whom the persona belongs. Experiments were conducted on MBart, FRED-T5, Starling-7B, which is based on the Mistral, and Encoder2Encoder models. The results demonstrated that all models exhibited an insufficient level of recall in the persona extraction task. The incorporation of the NCE Loss improved the model's precision at the expense of its recall. Furthermore, increasing the model's size led to enhanced extraction of personas.

Autism Spectrum Disorder (ASD) is a diverse collection of neurobiological conditions marked by challenges in social communication and reciprocal interactions, as well as repetitive and stereotypical behaviors. Atypical behavior patterns in a long, untrimmed video can serve as biomarkers for children with ASD. In this paper, we propose a video-based weakly-supervised method that takes spatio-temporal features of long videos to learn typical and atypical behaviors for autism detection. On top of that, we propose a shallow TCN-MLP network, which is designed to further categorize the severity score. We evaluate our method on actual evaluation videos of children with autism collected and annotated (for severity score) by clinical professionals. Experimental results demonstrate the effectiveness of behavioral biomarkers that could help clinicians in autism spectrum analysis.

Multimodal large language models (MLLMs) have become the cornerstone of today's generative AI ecosystem, sparking intense competition among tech giants and startups. In particular, an MLLM generates a text response given a prompt consisting of an image and a question. While state-of-the-art MLLMs use safety filters and alignment techniques to refuse unsafe prompts, in this work, we introduce MLLM-Refusal, the first method that induces refusals for safe prompts. In particular, our MLLM-Refusal optimizes a nearly-imperceptible refusal perturbation and adds it to an image, causing target MLLMs to likely refuse a safe prompt containing the perturbed image and a safe question. Specifically, we formulate MLLM-Refusal as a constrained optimization problem and propose an algorithm to solve it. Our method offers competitive advantages for MLLM model providers by potentially disrupting user experiences of competing MLLMs, since competing MLLM's users will receive unexpected refusals when they unwittingly use these perturbed images in their prompts. We evaluate MLLM-Refusal on four MLLMs across four datasets, demonstrating its effectiveness in causing competing MLLMs to refuse safe prompts while not affecting non-competing MLLMs. Furthermore, we explore three potential countermeasures -- adding Gaussian noise, DiffPure, and adversarial training. Our results show that they are insufficient: though they can mitigate MLLM-Refusal's effectiveness, they also sacrifice the accuracy and/or efficiency of the competing MLLM. The code is available at //github.com/Sadcardation/MLLM-Refusal.

This paper explores the impact of different back-translation approaches on machine translation for Ladin, specifically the Val Badia variant. Given the limited amount of parallel data available for this language (only 18k Ladin-Italian sentence pairs), we investigate the performance of a multilingual neural machine translation model fine-tuned for Ladin-Italian. In addition to the available authentic data, we synthesise further translations by using three different models: a fine-tuned neural model, a rule-based system developed specifically for this language pair, and a large language model. Our experiments show that all approaches achieve comparable translation quality in this low-resource scenario, yet round-trip translations highlight differences in model performance.

Social media datasets are essential for research on disinformation, influence operations, social sensing, hate speech detection, cyberbullying, and other significant topics. However, access to these datasets is often restricted due to costs and platform regulations. As such, acquiring datasets that span multiple platforms which are crucial for a comprehensive understanding of the digital ecosystem is particularly challenging. This paper explores the potential of large language models to create lexically and semantically relevant social media datasets across multiple platforms, aiming to match the quality of real datasets. We employ ChatGPT to generate synthetic data from two real datasets, each consisting of posts from three different social media platforms. We assess the lexical and semantic properties of the synthetic data and compare them with those of the real data. Our empirical findings suggest that using large language models to generate synthetic multi-platform social media data is promising. However, further enhancements are necessary to improve the fidelity of the outputs.

Learning continually from a stream of non-i.i.d. data is an open challenge in deep learning, even more so when working in resource-constrained environments such as embedded devices. Visual models that are continually updated through supervised learning are often prone to overfitting, catastrophic forgetting, and biased representations. On the other hand, large language models contain knowledge about multiple concepts and their relations, which can foster a more robust, informed and coherent learning process. This work proposes Continual Visual Mapping (CVM), an approach that continually ground vision representations to a knowledge space extracted from a fixed Language model. Specifically, CVM continually trains a small and efficient visual model to map its representations into a conceptual space established by a fixed Large Language Model. Due to their smaller nature, CVM can be used when directly adapting large visual pre-trained models is unfeasible due to computational or data constraints. CVM overcome state-of-the-art continual learning methods on five benchmarks and offers a promising avenue for addressing generalization capabilities in continual learning, even in computationally constrained devices.

北京阿比特科技有限公司