亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-target domain adaptation (MTDA) for semantic segmentation poses a significant challenge, as it involves multiple target domains with varying distributions. The goal of MTDA is to minimize the domain discrepancies among a single source and multi-target domains, aiming to train a single model that excels across all target domains. Previous MTDA approaches typically employ multiple teacher architectures, where each teacher specializes in one target domain to simplify the task. However, these architectures hinder the student model from fully assimilating comprehensive knowledge from all target-specific teachers and escalate training costs with increasing target domains. In this paper, we propose an ouroboric domain bridging (OurDB) framework, offering an efficient solution to the MTDA problem using a single teacher architecture. This framework dynamically cycles through multiple target domains, aligning each domain individually to restrain the biased alignment problem, and utilizes Fisher information to minimize the forgetting of knowledge from previous target domains. We also propose a context-guided class-wise mixup (CGMix) that leverages contextual information tailored to diverse target contexts in MTDA. Experimental evaluations conducted on four urban driving datasets (i.e., GTA5, Cityscapes, IDD, and Mapillary) demonstrate the superiority of our method over existing state-of-the-art approaches.

相關內容

We propose GS-LRM, a scalable large reconstruction model that can predict high-quality 3D Gaussian primitives from 2-4 posed sparse images in 0.23 seconds on single A100 GPU. Our model features a very simple transformer-based architecture; we patchify input posed images, pass the concatenated multi-view image tokens through a sequence of transformer blocks, and decode final per-pixel Gaussian parameters directly from these tokens for differentiable rendering. In contrast to previous LRMs that can only reconstruct objects, by predicting per-pixel Gaussians, GS-LRM naturally handles scenes with large variations in scale and complexity. We show that our model can work on both object and scene captures by training it on Objaverse and RealEstate10K respectively. In both scenarios, the models outperform state-of-the-art baselines by a wide margin. We also demonstrate applications of our model in downstream 3D generation tasks. Our project webpage is available at: //sai-bi.github.io/project/gs-lrm/ .

With the expansion of the scale of robotics applications, the multi-goal multi-agent pathfinding (MG-MAPF) problem began to gain widespread attention. This problem requires each agent to visit pre-assigned multiple goal points at least once without conflict. Some previous methods have been proposed to solve the MG-MAPF problem based on Decoupling the goal Vertex visiting order search and the Single-agent pathfinding (DVS). However, this paper demonstrates that the methods based on DVS cannot always obtain the optimal solution. To obtain the optimal result, we propose the Multi-Goal Conflict-Based Search (MGCBS), which is based on Decoupling the goal Safe interval visiting order search and the Single-agent pathfinding (DSS). Additionally, we present the Time-Interval-Space Forest (TIS Forest) to enhance the efficiency of MGCBS by maintaining the shortest paths from any start point at any start time step to each safe interval at the goal points. The experiment demonstrates that our method can consistently obtain optimal results and execute up to 7 times faster than the state-of-the-art method in our evaluation.

Extractive Question Answering (EQA) in Machine Reading Comprehension (MRC) often faces the challenge of dealing with semantically identical but format-variant inputs. Our work introduces a novel approach, called the ``Query Latent Semantic Calibrator (QLSC)'', designed as an auxiliary module for existing MRC models. We propose a unique scaling strategy to capture latent semantic center features of queries. These features are then seamlessly integrated into traditional query and passage embeddings using an attention mechanism. By deepening the comprehension of the semantic queries-passage relationship, our approach diminishes sensitivity to variations in text format and boosts the model's capability in pinpointing accurate answers. Experimental results on robust Question-Answer datasets confirm that our approach effectively handles format-variant but semantically identical queries, highlighting the effectiveness and adaptability of our proposed method.

Large models represent a groundbreaking advancement in multiple application fields, enabling remarkable achievements across various tasks. However, their unprecedented scale comes with significant computational costs. These models, often consisting of billions of parameters, require vast amounts of computational resources for execution. Especially, the expansive scale and computational demands pose considerable challenges when customizing them for particular downstream tasks, particularly over the hardware platforms constrained by computational capabilities. Parameter Efficient Fine-Tuning (PEFT) provides a practical solution by efficiently adapt the large models over the various downstream tasks. In particular, PEFT refers to the process of adjusting the parameters of a pre-trained large models to adapt it to a specific task while minimizing the number of additional parameters introduced or computational resources required. This approach is particularly important when dealing with large language models with high parameter counts, as fine-tuning these models from scratch can be computationally expensive and resource-intensive, posing considerable challenges in the supporting system platform design. In this survey, we present comprehensive studies of various PEFT algorithms, examining their performance and computational overhead. Moreover, we provide an overview of applications developed using different PEFT algorithms and discuss common techniques employed to mitigate computation costs for PEFT. In addition to the algorithmic perspective, we overview various real-world system designs to investigate the implementation costs associated with different PEFT algorithms. This survey serves as an indispensable resource for researchers aiming to understand both the PEFT algorithm and its system implementation, offering detailed insights into recent advancements and practical applications.

Pre-trained vision transformers have strong representation benefits to various downstream tasks. Recently, many parameter-efficient fine-tuning (PEFT) methods have been proposed, and their experiments demonstrate that tuning only 1\% extra parameters could surpass full fine-tuning in low-data resource scenarios. However, these methods overlook the task-specific information when fine-tuning diverse downstream tasks. In this paper, we propose a simple yet effective method called "Salient Channel Tuning" (SCT) to leverage the task-specific information by forwarding the model with the task images to select partial channels in a feature map that enables us to tune only 1/8 channels leading to significantly lower parameter costs. Experiments on 19 visual transfer learning downstream tasks demonstrate that our SCT outperforms full fine-tuning on 18 out of 19 tasks by adding only 0.11M parameters of the ViT-B, which is 780$\times$ fewer than its full fine-tuning counterpart. Furthermore, experiments on domain generalization and few-shot classification further demonstrate the effectiveness and generic of our approach. The code is available at //github.com/showlab/SCT.

Electronic Health Record (EHR) data, while rich in information, often suffers from sparsity, posing significant challenges in predictive modeling. Traditional imputation methods inadequately distinguish between real and imputed data, leading to potential inaccuracies in models. Addressing this, we introduce PRISM, a framework that indirectly imputes data through prototype representations of similar patients, thus ensuring denser and more accurate embeddings. PRISM also includes a feature confidence learner module, which evaluates the reliability of each feature in light of missing data. Additionally, it incorporates a new patient similarity metric that accounts for feature confidence, avoiding overreliance on imprecise imputed values. Our extensive experiments on the MIMIC-III, MIMIC-IV, PhysioNet Challenge 2012, eICU datasets demonstrate PRISM 's superior performance in predicting in-hospital mortality and 30-day readmission tasks, showcasing its effectiveness in handling EHR data sparsity. For the sake of reproducibility and further research, we have made the code publicly available at //github.com/yhzhu99/PRISM.

Taking over arbitrary tasks like humans do with a mobile service robot in open-world settings requires a holistic scene perception for decision-making and high-level control. This paper presents a human-inspired scene perception model to minimize the gap between human and robotic capabilities. The approach takes over fundamental neuroscience concepts, such as a triplet perception split into recognition, knowledge representation, and knowledge interpretation. A recognition system splits the background and foreground to integrate exchangeable image-based object detectors and SLAM, a multi-layer knowledge base represents scene information in a hierarchical structure and offers interfaces for high-level control, and knowledge interpretation methods deploy spatio-temporal scene analysis and perceptual learning for self-adjustment. A single-setting ablation study is used to evaluate the impact of each component on the overall performance for a fetch-and-carry scenario in two simulated and one real-world environment.

Low-rank matrix approximation play a ubiquitous role in various applications such as image processing, signal processing, and data analysis. Recently, random algorithms of low-rank matrix approximation have gained widespread adoption due to their speed, accuracy, and robustness, particularly in their improved implementation on modern computer architectures. Existing low-rank approximation algorithms often require prior knowledge of the rank of the matrix, which is typically unknown. To address this bottleneck, we propose a low-rank approximation algorithm termed efficient orthogonal decomposition with automatic basis extraction (EOD-ABE) tailored for the scenario where the rank of the matrix is unknown. Notably, we introduce a randomized algorithm to automatically extract the basis that reveals the rank. The efficacy of the proposed algorithms is theoretically and numerically validated, demonstrating superior speed, accuracy, and robustness compared to existing methods. Furthermore, we apply the algorithms to image reconstruction, achieving remarkable results.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

北京阿比特科技有限公司