亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, computer vision has made remarkable advancements in autonomous driving and robotics. However, it has been observed that deep learning-based visual perception models lack robustness when faced with camera motion perturbations. The current certification process for assessing robustness is costly and time-consuming due to the extensive number of image projections required for Monte Carlo sampling in the 3D camera motion space. To address these challenges, we present a novel, efficient, and practical framework for certifying the robustness of 3D-2D projective transformations against camera motion perturbations. Our approach leverages a smoothing distribution over the 2D pixel space instead of in the 3D physical space, eliminating the need for costly camera motion sampling and significantly enhancing the efficiency of robustness certifications. With the pixel-wise smoothed classifier, we are able to fully upper bound the projection errors using a technique of uniform partitioning in camera motion space. Additionally, we extend our certification framework to a more general scenario where only a single-frame point cloud is required in the projection oracle. This is achieved by deriving Lipschitz-based approximated partition intervals. Through extensive experimentation, we validate the trade-off between effectiveness and efficiency enabled by our proposed method. Remarkably, our approach achieves approximately 80% certified accuracy while utilizing only 30% of the projected image frames.

相關內容

Binarization is a powerful compression technique for neural networks, significantly reducing FLOPs, but often results in a significant drop in model performance. To address this issue, partial binarization techniques have been developed, but a systematic approach to mixing binary and full-precision parameters in a single network is still lacking. In this paper, we propose a controlled approach to partial binarization, creating a budgeted binary neural network (B2NN) with our MixBin strategy. This method optimizes the mixing of binary and full-precision components, allowing for explicit selection of the fraction of the network to remain binary. Our experiments show that B2NNs created using MixBin outperform those from random or iterative searches and state-of-the-art layer selection methods by up to 3% on the ImageNet-1K dataset. We also show that B2NNs outperform the structured pruning baseline by approximately 23% at the extreme FLOP budget of 15%, and perform well in object tracking, with up to a 12.4% relative improvement over other baselines. Additionally, we demonstrate that B2NNs developed by MixBin can be transferred across datasets, with some cases showing improved performance over directly applying MixBin on the downstream data.

Image enhancement is a significant research area in the fields of computer vision and image processing. In recent years, many learning-based methods for image enhancement have been developed, where the Look-up-table (LUT) has proven to be an effective tool. In this paper, we delve into the potential of Contrastive Language-Image Pre-Training (CLIP) Guided Prompt Learning, proposing a simple structure called CLIP-LUT for image enhancement. We found that the prior knowledge of CLIP can effectively discern the quality of degraded images, which can provide reliable guidance. To be specific, We initially learn image-perceptive prompts to distinguish between original and target images using CLIP model, in the meanwhile, we introduce a very simple network by incorporating a simple baseline to predict the weights of three different LUT as enhancement network. The obtained prompts are used to steer the enhancement network like a loss function and improve the performance of model. We demonstrate that by simply combining a straightforward method with CLIP, we can obtain satisfactory results.

In human interactions, emotion recognition is crucial. For this reason, the topic of computer-vision approaches for automatic emotion recognition is currently being extensively researched. Processing multi-channel electroencephalogram (EEG) information is one of the most researched methods for automatic emotion recognition. This paper presents a new model for an affective computing-driven Quality of Experience (QoE) prediction. In order to validate the proposed model, a publicly available dataset is used. The dataset contains EEG, ECG, and respiratory data and is focused on a multimedia QoE assessment context. The EEG data are retained on which the differential entropy and the power spectral density are calculated with an observation window of three seconds. These two features were extracted to train several deep-learning models to investigate the possibility of predicting QoE with five different factors. The performance of these models is compared, and the best model is optimized to improve the results. The best results were obtained with an LSTM-based model, presenting an F1-score from 68% to 78%. An analysis of the model and its features shows that the Delta frequency band is the least necessary, that two electrodes have a higher importance, and that two other electrodes have a very low impact on the model's performances.

In recent years, the influence of cognitive effects and biases on users' thinking, behaving, and decision-making has garnered increasing attention in the field of interactive information retrieval. The decoy effect, one of the main empirically confirmed cognitive biases, refers to the shift in preference between two choices when a third option (the decoy) which is inferior to one of the initial choices is introduced. However, it is not clear how the decoy effect influences user interactions with and evaluations on Search Engine Result Pages (SERPs). To bridge this gap, our study seeks to understand how the decoy effect at the document level influences users' interaction behaviors on SERPs, such as clicks, dwell time, and usefulness perceptions. We conducted experiments on two publicly available user behavior datasets and the findings reveal that, compared to cases where no decoy is present, the probability of a document being clicked could be improved and its usefulness score could be higher, should there be a decoy associated with the document.

Neural networks have shown their effectiveness in various tasks in the realm of quantum computing. However, their application in quantum error mitigation, a crucial step towards realizing practical quantum advancements, has been restricted by reliance on noise-free statistics. To tackle this critical challenge, we propose a data augmentation empowered neural model for error mitigation (DAEM). Our model does not require any prior knowledge about the specific noise type and measurement settings and can estimate noise-free statistics solely from the noisy measurement results of the target quantum process, rendering it highly suitable for practical implementation. In numerical experiments, we show the model's superior performance in mitigating various types of noise, including Markovian noise and Non-Markovian noise, compared with previous error mitigation methods. We further demonstrate its versatility by employing the model to mitigate errors in diverse types of quantum processes, including those involving large-scale quantum systems and continuous-variable quantum states. This powerful data augmentation-empowered neural model for error mitigation establishes a solid foundation for realizing more reliable and robust quantum technologies in practical applications.

Image registration is a critical component in the applications of various medical image analyses. In recent years, there has been a tremendous surge in the development of deep learning (DL)-based medical image registration models. This paper provides a comprehensive review of medical image registration. Firstly, a discussion is provided for supervised registration categories, for example, fully supervised, dual supervised, and weakly supervised registration. Next, similarity-based as well as generative adversarial network (GAN)-based registration are presented as part of unsupervised registration. Deep iterative registration is then described with emphasis on deep similarity-based and reinforcement learning-based registration. Moreover, the application areas of medical image registration are reviewed. This review focuses on monomodal and multimodal registration and associated imaging, for instance, X-ray, CT scan, ultrasound, and MRI. The existing challenges are highlighted in this review, where it is shown that a major challenge is the absence of a training dataset with known transformations. Finally, a discussion is provided on the promising future research areas in the field of DL-based medical image registration.

Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

北京阿比特科技有限公司